SP
Slavé Petrovski
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
La Trobe University, University of Melbourne, Austin Health
+ 9 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
24
h-index:
46
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
90

Surveying the contribution of rare variants to the genetic architecture of human disease through exome sequencing of 177,882 UK Biobank participants

Quanli Wang et al.Oct 24, 2023
+16
K
R
Q
Summary The UK Biobank (UKB) represents an unprecedented population-based study of 502,543 participants with detailed phenotypic data and linkage to medical records. While the release of genotyping array data for this cohort has bolstered genomic discovery for common variants, the contribution of rare variants to this broad phenotype collection remains relatively unknown. Here, we use exome sequencing data from 177,882 UKB participants to evaluate the association between rare protein-coding variants with 10,533 binary and 1,419 quantitative phenotypes. We performed both a variant-level phenome-wide association study (PheWAS) and a gene-level collapsing analysis-based PheWAS tailored to detecting the aggregate contribution of rare variants. The latter revealed 911 statistically significant gene-phenotype relationships, with a median odds ratio of 15.7 for binary traits. Among the binary trait associations identified using collapsing analysis, 83% were undetectable using single variant association tests, emphasizing the power of collapsing analysis to detect signal in the setting of high allelic heterogeneity. As a whole, these genotype-phenotype associations were significantly enriched for loss-of-function mediated traits and currently approved drug targets. Using these results, we summarise the contribution of rare variants to common diseases in the context of the UKB phenome and provide an example of how novel gene-phenotype associations can aid in therapeutic target prioritisation.
90
Paper
Citation11
0
Save
43

Genome-wide prediction of dominant and recessive neurodevelopmental disorder risk genes

Ryan Dhindsa et al.Oct 24, 2023
+5
J
B
R
Abstract Despite great progress in the identification of neurodevelopmental disorder (NDD) risk genes, there are thousands that remain to be discovered. Computational tools that provide accurate gene-level predictions of NDD risk can significantly reduce the costs and time needed to prioritize and discover novel NDD risk genes. Here, we first demonstrate that machine learning models trained solely on single-cell RNA-sequencing data from the developing human cortex can robustly predict genes implicated in autism spectrum disorder (ASD), developmental and epileptic encephalopathy (DEE), and developmental delay (DD). Strikingly, we find differences in gene expression patterns of genes with monoallelic and biallelic inheritance patterns. We then integrate these expression data with 300 orthogonal features in a semi-supervised machine learning framework (mantis-ml) to train inheritance-specific models for ASD, DEE, and DD. The models have high predictive power (AUCs: 0.84 to 0.95) and top-ranked genes were up to two-fold (monoallelic models) and six-fold (biallelic models) more enriched for high-confidence NDD risk genes than genic intolerance metrics. Across all models, genes in the top decile of predicted risk genes were 60 to 130 times more likely to have publications strongly linking them to the phenotype of interest in PubMed compared to the bottom decile. Collectively, this work provides highly robust novel NDD risk gene predictions that can complement large-scale gene discovery efforts and underscores the importance of incorporating inheritance into gene risk prediction tools ( https://nddgenes.com ).
43
Paper
Citation6
0
Save
7

A broad exome study of the genetic architecture of asthma reveals novel patient subgroups

Sophia Cameron‐Christie et al.Oct 24, 2023
+17
Q
A
S
Abstract Introduction Asthma risk is a complex interplay between genetic susceptibility and environment. Despite many significantly-associated common variants, the contribution of rarer variants with potentially greater effect sizes has not been as extensively studied. We present an exome-based study adopting 24,576 cases and 120,530 controls to assess the contribution of rare protein-coding variants to the risk of early-onset or all-comer asthma. Methods We performed case-control analyses on three genetic units: variant-, gene- and pathway-level, using sequence data from the Scandinavian Asthma Genetic Study and UK Biobank participants with asthma. Cases were defined as all-comer asthma (n=24,576) and early-onset asthma (n=5,962). Controls were 120,530 UK Biobank participants without reported history of respiratory illness. Results Variant-level analyses identified statistically significant variants at moderate-to-common allele frequency, including protein-truncating variants in FLG and IL33. Asthma risk was significantly increased not only by individual, common FLG protein-truncating variants, but also among the collection of rare-to-private FLG protein-truncating variants (p=6.8×10 −7 ). This signal was driven by early-onset asthma and did not correlate with circulating eosinophil levels. In contrast, a single splice variant in IL33 was significantly protective (p=8.0×10 −10 ), while the collection of remaining IL33 protein-truncating variants showed no class effect (p=0.54). A pathway-based analysis identified that protein-truncating variants in loss-of-function intolerant genes were significantly enriched among individuals with asthma. Conclusions Access to the full allele frequency spectrum of protein-coding variants provides additional clarity about the potential mechanisms of action for FLG and IL33. Beyond these two significant drivers, we detected a significant enrichment of protein-truncating variants in loss-of-function intolerant genes.
7
Paper
Citation5
0
Save
1

Codon affinity in mitochondrial DNA shapes evolutionary and somatic fitness

Caleb Lareau et al.Oct 24, 2023
+27
J
Y
C
Summary Paragraph Somatic variation contributes to biological heterogeneity by modulating cellular proclivity to differentiate, expand, adapt, or die. While large-scale sequencing efforts have revealed the foundational role of somatic variants to drive human tumor evolution, our understanding of the contribution of mutations to modulate cellular fitness in non-malignant contexts remains understudied. Here, we identify a mosaic synonymous variant (m.7076A>G) in the mitochondrial DNA (mtDNA) encoded cytochrome c-oxidase subunit 1 gene ( MT-CO1 , p.Gly391=), which was present at homoplasmy in 47% of immune cells from a healthy donor. Using single-cell multi-omics, we discover highly specific selection against the m.7076G mutant allele in the CD8 + effector memory T cell compartment in vivo , reminiscent of selection observed for pathogenic mtDNA alleles 1, 2 and indicative of lineage-specific metabolic requirements. While the wildtype m.7076A allele is translated via Watson-Crick-Franklin base-pairing, the anticodon diversity of the mitochondrial transfer RNA pool is limited, requiring wobble-dependent translation of the m.7076G mutant allele. Notably, mitochondrial ribosome profiling revealed altered codon-anticodon affinity at the wobble position as evidenced by stalled translation of the synonymous m.7076G mutant allele encoding for glycine. Generalizing this observation, we provide a new ontogeny of the 8,482 synonymous variants in the human mitochondrial genome that enables interpretation of functional mtDNA variation. Specifically, via inter- and intra-species evolutionary analyses, population-level complex trait associations, and the occurrence of germline and somatic mtDNA mutations from large-scale sequencing studies, we demonstrate that synonymous variation impacting codon:anticodon affinity is actively evolving across the entire mitochondrial genome and has broad functional and phenotypic effects. In summary, our results introduce a new ontogeny for mitochondrial genetic variation and support a model where organismal principles can be discerned from somatic evolution via single-cell genomics.
1
Paper
Citation1
0
Save
0

meaRtools: an R Package for the Analysis of Neuronal Networks Recorded on Microelectrode Arrays

Sahar Gelfman et al.May 7, 2020
+14
Y
Q
S
Abstract Here we present an open-source R package ‘meaRtools’ that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL>=3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/ . Author summary Cultured neuronal networks are widely used to study and characterize neuronal network activity. Among the many uses of neuronal cultures are the capabilities to evaluate neurotoxicity and the effects of pharmacological compounds on cellular physiology. Multi-well microelectrode arrays (MEAs) can collect high-throughput data from multiple neuronal cultures simultaneously, and thereby make possible hypotheses-driven inquiries into neurobiology and neuropharmacology. The analysis of MEA-derived information presents many computational challenges. High frequency data recorded simultaneously from hundreds of electrodes can be difficult to handle. The need to compare network activity across various drug treatments or genotypes recorded on the same plate from experiments lasting several weeks presents another challenge. These challenges inspired us to develop meaRtools; an MEA data analysis package that contains new methods to characterize network activity patterns, which are illustrated here using examples from a genetic mouse model of epilepsy. Among the highlights of meaRtools are novel algorithms designed to characterize neuronal activity dynamics and network properties such as bursting and synchronization, options to combine multiple recordings and use a robust statistical framework to draw appropriate statistical inferences, and finally data visualizations and plots. In summary, meaRtools provides a platform for the analyses of singular and longitudinal MEA experiments.
0

Human essentiality genes and targeted oncology therapies

Andrew Harper et al.Jun 11, 2024
S
U
A
Abstract Human essentiality genes are significantly enriched in targeted therapies successfully used in oncology. Embedding human essentiality metrics into discovery pipelines could optimise the delivery of highly effective targeted therapies among clinical development strategies.
0

Regional collapsing of rare variation implicates specific genic regions in ALS

Sahar Gelfman et al.May 7, 2020
+16
C
S
S
Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies, one focuses rare variation collapsing on homology-based protein domains as the unit for collapsing and another gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3,093 ALS cases and 8,186 controls of European ancestry, and also 3,239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes including SOD1, NEK1, TARDBP and FUS. While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.
0
0
Save
0

Whole Exome Sequencing in 20,197 Persons for Rare Variants in Alzheimer Disease

Neha Raghavan et al.May 6, 2020
+10
H
A
N
The genetic bases of Alzheimer's disease remain uncertain. An international effort to fully articulate genetic risks and protective factors is underway with the hope of identifying potential therapeutic targets and preventive strategies. The goal here was to identify and characterize the frequency and impact of rare and ultra-rare variants in Alzheimer's disease using whole exome sequencing in 20,197 individuals. We used a gene-based collapsing analysis of loss-of-function ultra-rare variants in a case-control study design with data from the Washington Heights-Inwood Columbia Aging Project, the Alzheimer's Disease Sequencing Project and unrelated individuals from the Institute of Genomic Medicine at Columbia University. We identified 19 cases carrying extremely rare SORL1 loss-of-function variants among a collection of 6,965 cases and a single loss-of-function variant among 13,252 controls (p = 2.17 x 10-8; OR 36.2 [95%CI 5.8 - 1493.0]). Age-at-onset was seven years earlier for patients with SORL1 qualifying variant compared with non-carriers. No other gene attained a study-wide level of statistical significance, but multiple top-ranked genes, including GRID2IP, WDR76 and GRN, were among candidates for follow-up studies. This study implicates ultra-rare, loss-of-function variants in SORL1 as a significant genetic risk factor for Alzheimer's disease and provides a comprehensive dataset comparing the burden of rare variation in nearly all human genes in Alzheimer's disease cases and controls. This is the first investigation to establish a genome-wide statistically significant association between multiple extremely rare loss-of-function variants in SORL1 and Alzheimer's disease in a large whole-exome study of unrelated cases and controls.
0

Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

Yen‐Chen Feng et al.May 6, 2020
+230
L
D
Y
Sequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.
0

Systematic re-annotation of 191 genes associated with early-onset epilepsy unmasks de novo variants linked to Dravet syndrome in novel SCN1A exons

Charles Steward et al.May 7, 2020
+35
M
J
C
The early infantile epileptic encephalopathies (EIEE) are a group of rare, severe neurodevelopmental disorders, where even the most thorough sequencing studies leave 60-65% of patients without a molecular diagnosis. Here, we explore the incompleteness of transcript models used for exome and genome analysis as one potential explanation for lack of current diagnoses. Therefore, we have updated the GENCODE gene annotation for 191 epilepsy-associated genes, using human brain-derived transcriptomic libraries and other data to build 3,550 novel putative transcript models. The extended transcriptional footprint of these genes allowed for 294 intronic or intergenic variants, found in human mutation databases, to be reclassified as exonic, while a further 70 intronic variants were reclassified as splice-site proximal. Using SCN1A as a case study due to its close phenotype/genotype correlation with Dravet syndrome, we screened 122 people with Dravet syndrome, or a similar phenotype, with a panel of novel exon sequences representing eight established genes and identified two de novo SCN1A variants that now, through improved gene annotation can be ascribed to residing among novel exons. These two (from 122 screened patients, 1.6%) new molecular diagnoses carry significant clinical implications. Furthermore, we identified a previously-classified SCN1A intronic Dravet-associated variant that now lies within a deeply conserved novel exon. Our findings illustrate the potential gains of thorough gene annotation in improving diagnostic yields for genetic disorders. We would expect to find new molecular diagnoses in our 191 genes that were originally suspected by clinicians for patients, with a negative diagnosis.