JM
Joseph Maranville
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
3,730
h-index:
26
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic atlas of the human plasma proteome

Benjamin Sun et al.May 29, 2018
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. A genetic atlas of the human plasma proteome, comprising 1,927 genetic associations with 1,478 proteins, identifies causes of disease and potential drug targets.
0
Citation1,519
0
Save
0

FinnGen provides genetic insights from a well-phenotyped isolated population

Mitja Kurki et al.Jan 18, 2023
Abstract Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored 1,2 . FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10 –11 ) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
0
Citation1,372
0
Save
1

Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases

Jie Zheng et al.Sep 7, 2020
The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here we estimated the effects of 1,002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium is widespread in naïve phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes ( https://www.epigraphdb.org/pqtl/ ). Evaluation of data from historic drug development programs showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of this approach in identifying and prioritizing potential therapeutic targets. Mendelian randomization (MR) and colocalization analyses are used to estimate causal effects of 1,002 plasma proteins on 225 phenotypes. Evidence from drug developmental programs shows that target-indication pairs with MR and colocalization support were more likely to be approved, highlighting the value of this approach for prioritizing therapeutic targets.
1
Citation448
0
Save
0

Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease

Chen Yao et al.Aug 9, 2018
Abstract Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome’s causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment.
0
Citation314
0
Save
0

Phenome-wide association studies (PheWAS) across large “real-world data” population cohorts support drug target validation

Dorothée Diogo et al.Nov 13, 2017
Abstract Phenome-wide association studies (PheWAS), which assess whether a genetic variant is associated with multiple phenotypes across a phenotypic spectrum, have been proposed as a possible aid to drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we evaluate whether PheWAS can inform target validation during drug development. We selected 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease therapeutic indications. We independently interrogated these SNPs through PheWAS in four large “real-world data” cohorts (23andMe, UK Biobank, FINRISK, CHOP) for association with a total of 1,892 binary endpoints. We then conducted meta-analyses for 145 harmonized disease endpoints in up to 697,815 individuals and joined results with summary statistics from 57 published GWAS. Our analyses replicate 70% of known GWAS associations and identify 10 novel associations with study-wide significance after multiple test correction (P<1.8x10 -6 ; out of 72 novel associations with FDR<0.1). By leveraging directionality and point estimate of the effect sizes, we describe new associations that may predict ADEs, e.g., acne, high cholesterol, gout and gallstones for rs738409 (p.I148M) in PNPLA3 ; or asthma for rs1990760 (p.T946A) in IFIH1 . We further propose how quantitative estimates of genetic safety/efficacy profiles can be used to help prioritize candidate targets for a specific indication. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery. One Sentence Summary Matching genetics with phenotypes in 800,000 individuals predicts efficacy and on-target safety of future drugs.
0
Citation8
0
Save