Uniform processing and detailed annotation of human, worm and fly RNA-sequencing data reveal ancient, conserved features of the transcriptome, shared co-expression modules (many enriched in developmental genes), matched expression patterns across development and similar extent of non-canonical, non-coding transcription; furthermore, the data are used to create a single, universal model to predict gene-expression levels for all three organisms from chromatin features at the promoter. In this paper the modENCODE consortium reports on a comparative analysis of transcriptome data for human, worm and fly, revealing ancient, conserved features such as shared co-expression modules enriched in developmental genes. Expression patterns are used to align the stages in worm and fly development. Gene expression levels, both coding and non-coding, in all three organisms can be quantitatively predicted from chromatin features at the promoter using a model based on a single set of organism-independent parameters. The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features1,2,3,4,5,6. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a ‘universal model’ based on a single set of organism-independent parameters.