RD
Raamesh Deshpande
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
3,331
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Genetic Landscape of a Cell

Michael Costanzo et al.Jan 21, 2010
+50
J
A
M
Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425 ) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created.
0
Citation2,161
0
Save
0

A global genetic interaction network maps a wiring diagram of cellular function

Michael Costanzo et al.Sep 22, 2016
+51
E
B
M
INTRODUCTION Genetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. RATIONALE Genome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS We tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. CONCLUSION A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships. A global network of genetic interaction profile similarities. ( Left ) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located closer to each other, whereas genes with less similar profiles are positioned farther apart. ( Right ) Spatial analysis of functional enrichment was used to identify and color network regions enriched for similar Gene Ontology bioprocess terms.
0
Citation1,165
0
Save
0

Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interaction networks

Scott Simpkins et al.Mar 1, 2017
+14
R
J
S
Abstract Chemical-genetic interactions – observed when the treatment of mutant cells with chemical compounds reveals unexpected phenotypes – contain rich functional information linking compounds to their cellular modes of action. To systematically identify these interactions, an array of mutants is challenged with a compound and monitored for fitness defects, generating a chemical-genetic interaction profile that provides a quantitative, unbiased description of the cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-wide double-mutant screens, provide a key for interpreting the functional information contained in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses of genetic and chemical-genetic interaction networks have not been systematically evaluated. We developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a genetic interaction network to predict the biological processes perturbed by compounds. CG-TARGET compared favorably to a baseline enrichment approach across a variety of benchmarks, achieving similar accuracy while substantially improving the ability to control the false discovery rate of biological process predictions. We applied CG-TARGET to a recent screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae , integrating this dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500 compounds with high-confidence biological process predictions for further study. Upon investigation of the compatibility of chemical-genetic and genetic interaction profiles, we observed that one-third of observed chemical-genetic interactions contributed to the highest-confidence biological process predictions and that negative chemical-genetic interactions overwhelmingly formed the basis of these predictions. We present here a detailed characterization of the CG-TARGET method along with experimental validation of predicted biological process targets, focusing on inhibitors of tubulin polymerization and cell cycle progression. Our approach successfully demonstrates the use of genetic interaction networks in the functional annotation of compounds to biological processes.
0
Citation5
0
Save
0

Systematic identification of pleiotropic genes from genetic interactions

Elizabeth Koch et al.Mar 1, 2017
+3
R
M
E
Modular structures in biological networks are ubiquitous and well-described, yet this organization does not capture the complexity of genes individually influencing many modules. Pleiotropy, the phenomenon of a single genetic locus with multiple phenotypic effects, has previously been measured according to many definitions, which typically count phenotypes associated with genes. We take the perspective that, because genes work in complex and interconnected modules, pleiotropy can be treated as a network-derived characteristic. Here, we use the complete network of yeast genetic interactions (GI) to measure pleiotropy of nearly 2700 essential and nonessential genes. Our method uses frequent item set mining to discover GI modules, annotates them with high-level processes, and uses entropy to measure the functional spread of each gene's set of containing modules. We classify genes whose modules indicate broad functional influence as having high pleiotropy, while genes with focused functional influence have low pleiotropy. These pleiotropy classes differed in a number of ways: high-pleiotropy genes have comparatively higher expression variance, higher protein abundance, more domains, and higher copy number, while low pleiotropy genes are more likely to be in protein complexes and have many curated phenotypes. We discuss the implications of these results regarding the nature and evolution of pleiotropy.
0

Efficient strategies for screening large-scale genetic interaction networks

Raamesh Deshpande et al.Jul 5, 2017
+6
S
J
R
Large-scale genetic interaction screening is a powerful approach for unbiased characterization of gene function and understanding systems-level cellular organization. While genome-wide screens are desirable as they provide the most comprehensive interaction profiles, they are resource and time-intensive and sometimes infeasible, depending on the species and experimental platform. For these scenarios, optimal methods for more efficient screening while still producing the maximal amount of information from the resulting profiles are of interest. To address this problem, we developed an optimal algorithm, called COMPRESS-GI, which selects a small but informative set of genes that captures most of the functional information contained within genome-wide genetic interaction profiles. The utility of this algorithm is demonstrated through an application of the approach to define a diagnostic mutant set for large-scale chemical genetic screens, where more than 13,000 compound screens were achieved through the increased throughput enabled by the approach. COMPRESS-GI can be broadly applied for directing genetic interaction screens in other contexts, including in species with little or no prior genetic-interaction data.
0

Functional Annotation of Chemical Libraries across Diverse Biological Processes

Jeff Piotrowski et al.Feb 28, 2017
+28
A
H
J
Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells to a compound, revealing chemical-genetic interactions that can elucidate a compounds mode of action. We developed a highly parallel and unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized, diagnostic mutant collection that is predictive all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode sequencing protocol, enabling assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened 7 different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.
0

Comparing host module activation patterns and temporal dynamics in infection by influenza H1N1 viruses

Irina Nudelman et al.May 9, 2021
+6
G
D
I
ABSTRACT Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.