LF
Louis Fox
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
20
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

Raymond Walters et al.Mar 10, 2018
Abstract Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest GWAS to date of DSM - IV diagnosed AD. Genome - wide data on 14,904 individuals with AD and 37,944 controls from 28 case / control and family - based studies were meta - analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). Independent, genome - wide significant effects of different ADH1B variants were identified in European (rs1229984; p = 9.8E - 13) and African ancestries (rs2066702; p = 2.2E - 9). Significant genetic correlations were observed with schizophrenia, ADHD, depression, and use of cigarettes and cannabis. There was only modest genetic correlation with alcohol consumption and inconsistent associations with problem drinking. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and non - pathological drinking behaviors.
0
Citation20
0
Save
0

Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium

Renato Polimanti et al.Sep 11, 2019
To provide novel insights into the biology of opioid dependence (OD) and opioid use (i.e., exposure, OE), we completed a genome-wide analysis comparing up to 4,503 OD cases, 4,173 opioid-exposed controls, and 32,500 opioid-unexposed controls. Among the variants identified, rs9291211 was associated with OE (a comparison of exposed vs. unexposed controls; z=-5.39, p=7.2x10-8). This variant regulates the transcriptomic profiles of SLC30A9 and BEND4 in multiple brain tissues and was previously associated with depression, alcohol consumption, and neuroticism. A phenome-wide scan of rs9291211 in the UK Biobank (N>360,000) found association of this variant with propensity to use dietary supplements (p=1.68x10-8). With respect to the same OE phenotype in the gene-based analysis, we identified SDCCAG8 (z=4.69, p=10-6), which was previously associated with educational attainment, risk-taking behaviors, and schizophrenia. In addition, rs201123820 showed a genome-wide significant difference between OD cases and unexposed controls (z=5.55, p=2.9x10-8) and a significant association with musculoskeletal disorders in the UK Biobank (p=4.88x10-7). A polygenic risk score (PRS) based on a GWAS of risk-tolerance (N=466,571) was positively associated with OD (OD cases vs. unexposed controls, p=8.1x10-5; OD cases vs. exposed controls, p=0.054) and OE (exposed controls vs. unexposed controls, p=3.6x10-5). A PRS based on a GWAS of neuroticism (N=390,278) was positively associated with OD (OD cases vs. unexposed controls, p=3.2x10-5; OD cases vs. exposed controls, p=0.002) but not with OE (p=0.671). Our analyses highlight the difference between dependence and exposure and the importance of considering the definition of controls (exposed vs. unexposed) in studies of addiction.
0

Shared Genetic Risk between Eating Disorder- and Substance-Use-Related Phenotypes: Evidence from Genome-Wide Association Studies

Melissa Munn‐Chernoff et al.Aug 23, 2019
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa (BN) and problem alcohol use (genetic correlation [rg], twin-based=0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge-eating, AN without binge-eating, and a BN factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder (MDD). Total sample sizes per phenotype ranged from ~2,400 to ~537,000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg=0.18; false discovery rate q=0.0006), cannabis initiation and AN (rg=0.23; q<0.0001), and cannabis initiation and AN with binge-eating (rg=0.27; q=0.0016). Conversely, significant negative genetic correlations were observed between three non-diagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge-eating (rgs=-0.19 to -0.23; qs<0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for MDD loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships between these behaviors.
0

Anxiety and depression in patients with non-site-specific cancer symptoms: data from a rapid diagnostic clinic

Maria Monroy‐Iglesias et al.Jun 3, 2024
Background Rapid diagnostic clinics (RDCs) provide a streamlined holistic pathway for patients presenting with non-site specific (NSS) symptoms concerning of malignancy. The current study aimed to: 1) assess the prevalence of anxiety and depression, and 2) identify a combination of patient characteristics and symptoms associated with severe anxiety and depression at Guy’s and St Thomas’ Foundation Trust (GSTT) RDC in Southeast London. Additionally, we compared standard statistical methods with machine learning algorithms for predicting severe anxiety and depression. Methods Patients seen at GSTT RDC between June 2019 and January 2023 completed the General Anxiety Disorder Questionnaire (GAD-7) and Patient Health Questionnaire (PHQ-8) questionnaires, at baseline. We used logistic regression (LR) and 2 machine learning (ML) algorithms (random forest (RF), support vector machine (SVM)) to predict risk of severe anxiety and severe depression. The models were constructed using a set of sociodemographic and clinical variables. Results A total of 1734 patients completed GAD-7 and PHQ-8 questionnaires. Of these, the mean age was 59 years (Standard Deviation: 15.5), and 61.5% (n:1067) were female. Prevalence of severe anxiety (GAD-7 score ≥15) was 13.8% and severe depression (PHQ-8 score≥20) was 9.3%. LR showed that a combination of previous mental health condition (PMH, Adjusted Odds Rario (AOR) 3.28; 95% confidence interval (CI) 2.36–4.56), symptom duration &gt;6 months (AOR 2.20; 95%CI 1.28–3.77), weight loss (AOR 1.88; 95% CI 1.36–2.61), progressive pain (AOR 1.71; 95%CI 1.26–2.32), and fatigue (AOR 1.36; 95%CI 1.01–1.84), was positively associated with severe anxiety. Likewise, a combination PMH condition (AOR 3.95; 95%CI 2.17–5.75), fatigue (AOR 2.11; 95%CI 1.47–3.01), symptom duration &gt;6 months (AOR 1.98; 95%CI 1.06–3.68), weight loss (AOR 1.66; 95%CI 1.13–2.44), and progressive pain (AOR 1.50; 95%CI 1.04–2.16), was positively associated with severe depression. LR and SVM had highest accuracy levels for severe anxiety (LR: 86%, SVM: 85%) and severe depression (SVM: 89%, LR: 86%). Conclusion High prevalence of severe anxiety and severe depression was found. PMH, fatigue, weight loss, progressive pain, and symptoms &gt;6 months emerged as combined risk factors for both these psychological comorbidities. RDCs offer an opportunity to alleviate distress in patients with concerning symptoms by expediting diagnostic evaluations.