IT
I. Temple
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
3,642
h-index:
71
/
i10-index:
196
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mutations in ATP-Sensitive K+ Channel Genes Cause Transient Neonatal Diabetes and Permanent Diabetes in Childhood or Adulthood

Sarah Flanagan et al.Jun 27, 2007
Transient neonatal diabetes mellitus (TNDM) is diagnosed in the first 6 months of life, with remission in infancy or early childhood. For ∼50% of patients, their diabetes will relapse in later life. The majority of cases result from anomalies of the imprinted region on chromosome 6q24, and 14 patients with ATP-sensitive K+ channel (KATP channel) gene mutations have been reported. We determined the 6q24 status in 97 patients with TNDM. In patients in whom no abnormality was identified, the KCNJ11 gene and/or ABCC8 gene, which encode the Kir6.2 and SUR1 subunits of the pancreatic β-cell KATP channel, were sequenced. KATP channel mutations were found in 25 of 97 (26%) TNDM probands (12 KCNJ11 and 13 ABCC8), while 69 of 97 (71%) had chromosome 6q24 abnormalities. The phenotype associated with KCNJ11 and ABCC8 mutations was similar but markedly different from 6q24 patients who had a lower birth weight and who were diagnosed and remitted earlier (all P &lt; 0.001). KATP channel mutations were identified in 26 additional family members, 17 of whom had diabetes. Of 42 diabetic patients, 91% diagnosed before 6 months remitted, but those diagnosed after 6 months had permanent diabetes (P &lt; 0.0001). KATP channel mutations account for 89% of patients with non-6q24 TNDM and result in a discrete clinical subtype that includes biphasic diabetes that can be treated with sulfonylureas. Remitting neonatal diabetes was observed in two of three mutation carriers, and permanent diabetes occurred after 6 months of age in subjects without an initial diagnosis of neonatal diabetes.
0
Citation343
0
Save
0

Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability

Katrina Tatton‐Brown et al.Mar 9, 2014
Nazneen Rahman, Katrina Tatton-Brown and colleagues identify de novo mutations in the DNA methyltransferase gene DNMT3A as the cause of a new overgrowth syndrome. Shared features of this syndrome include a distinctive facial appearance, intellectual disability and greater height. Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism1. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia2,3,4. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies5.
0
Citation313
0
Save
0

The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study

Elisa Franco et al.Jul 29, 2015
BackgroundTraditional genetic testing focusses on analysis of one or a few genes according to clinical features; this approach is changing as improved sequencing methods enable simultaneous analysis of several genes. Neonatal diabetes is the presenting feature of many discrete clinical phenotypes defined by different genetic causes. Genetic subtype defines treatment, with improved glycaemic control on sulfonylurea treatment for most patients with potassium channel mutations. We investigated the effect of early, comprehensive testing of all known genetic causes of neonatal diabetes.MethodsIn this large, international, cohort study, we studied patients with neonatal diabetes diagnosed with diabetes before 6 months of age who were referred from 79 countries. We identified mutations by comprehensive genetic testing including Sanger sequencing, 6q24 methylation analysis, and targeted next-generation sequencing of all known neonatal diabetes genes.FindingsBetween January, 2000, and August, 2013, genetic testing was done in 1020 patients (571 boys, 449 girls). Mutations in the potassium channel genes were the most common cause (n=390) of neonatal diabetes, but were identified less frequently in consanguineous families (12% in consanguineous families vs 46% in non-consanguineous families; p<0·0001). Median duration of diabetes at the time of genetic testing decreased from more than 4 years before 2005 to less than 3 months after 2012. Earlier referral for genetic testing affected the clinical phenotype. In patients with genetically diagnosed Wolcott-Rallison syndrome, 23 (88%) of 26 patients tested within 3 months from diagnosis had isolated diabetes, compared with three (17%) of 18 patients referred later (>4 years; p<0·0001), in whom skeletal and liver involvement was common. Similarly, for patients with genetically diagnosed transient neonatal diabetes, the diabetes had remitted in only ten (10%) of 101 patients tested early (<3 months) compared with 60 (100%) of the 60 later referrals (p<0·0001).InterpretationPatients are now referred for genetic testing closer to their presentation with neonatal diabetes. Comprehensive testing of all causes identified causal mutations in more than 80% of cases. The genetic result predicts the best diabetes treatment and development of related features. This model represents a new framework for clinical care with genetic diagnosis preceding development of clinical features and guiding clinical management.FundingWellcome Trust and Diabetes UK.
0
Citation294
0
Save
44

Whole genome sequencing for diagnosis of neurological repeat expansion disorders

Kristina Ibáñez et al.Nov 6, 2020
ABSTRACT Background Repeat expansion (RE) disorders affect ~1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in under diagnosis of atypical clinical presentations, especially in paediatric patients without a prior positive family history. Whole genome sequencing (WGS) is emerging as a first-line test for rare genetic disorders, but until recently REs were thought to be undetectable by this approach. Methods WGS pipelines for RE disorder detection were deployed by the 100,000 Genomes Project and Illumina Clinical Services Laboratory. Performance was retrospectively assessed across the 13 most common neurological RE loci using 793 samples with prior orthogonal testing (182 with expanded alleles and 611 with alleles within normal size) and prospectively interrogated in 13,331 patients with suspected genetic neurological disorders. Findings WGS RE detection showed minimum 97·3% sensitivity and 99·6% specificity across all 13 disease-associated loci. Applying the pipeline to patients from the 100,000 Genomes Project identified pathogenic repeat expansions which were confirmed in 69 patients, including seven paediatric patients with no reported family history of RE disorders, with a 0.09% false positive rate. Interpretation We show here for the first time that WGS enables the detection of causative repeat expansions with high sensitivity and specificity, and that it can be used to resolve previously undiagnosed neurological disorders. This includes children with no prior suspicion of a RE disorder. These findings are leading to diagnostic implementation of this analytical pipeline in the NHS Genomic Medicine Centres in England. Funding Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, Illumina Inc
44
Citation7
0
Save
1

Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging

Aaron Jeffries et al.Nov 24, 2018
Abstract Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3A ( DNMT3A ) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G>A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated to genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. Notably, these findings were most striking in a carrier of the AML associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders; NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamentally new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance and determinants of biological aging in these growth disorders.
1
Citation3
0
Save
Load More