JL
Jingxian Liu
Author with expertise in Insect Symbiosis and Microbial Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
591
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations

Jackson Champer et al.Jul 20, 2017
A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.
0
Citation295
0
Save
0

Population dynamics of underdominance gene drive systems in continuous space

Jackson Champer et al.Oct 22, 2018
ABSTRACT Underdominance gene drive systems promise a mechanism for rapidly spreading payload alleles through a local population while otherwise remaining confined, unable to spread into neighboring populations due to their frequency-dependent dynamics. Such systems could provide a new tool in the fight against vector-borne diseases by disseminating transgenic payloads through vector populations. If local confinement can indeed be achieved, the decision-making process for the release of such constructs would likely be considerably simpler compared to other gene drive mechanisms such as CRISPR homing drives. So far, the confinement ability of underdominance systems has only been demonstrated in models of panmictic populations linked by migration. How such systems would behave in realistic populations where individuals move over continuous space remains largely unknown. Here, we study several underdominance systems in continuous-space population models and show that their dynamics are drastically altered from those in panmictic populations. Specifically, we find that all underdominance systems we studied can fail to persist in such environments, even after successful local establishment. At the same time, we find that a two-locus two-toxin-antitoxin system can still successfully invade neighboring populations in many scenarios even under weak migration. This suggests that the parameter space for underdominance systems to both establish in a given region and remain confined to that region would likely be highly limited. Overall, these results indicate that spatial context must be considered when assessing strategies for the deployment of underdominance systems.
0
Citation9
0
Save
1

Fitness effects of CRISPR endonucleases inDrosophila melanogasterpopulations

Anna Langmüller et al.May 14, 2021
Abstract CRISPR/Cas9 systems provide a highly efficient and flexible genome editing technology with numerous potential applications in areas ranging from gene therapy to population control. Some proposed applications involve CRISPR/Cas9 endonucleases integrated into an organism’s genome, which raises questions about potentially harmful effects to the transgenic individuals. One application where this is particularly relevant are CRISPR-based gene drives, which promise a mechanism for rapid genetic alteration of entire populations. The performance of such drives can strongly depend on fitness costs experienced by drive carriers, yet relatively little is known about the magnitude and causes of these costs. Here, we assess the fitness effects of genomic CRISPR/Cas9 expression in Drosophila melanogaster cage populations by tracking allele frequencies of four different transgenic constructs, designed to disentangle direct fitness costs due to the integration, expression, and target-site activity of Cas9 from costs due to potential off-target cleavage. Using a maximum likelihood framework, we find a moderate level of fitness costs due to off-target effects but do not detect significant direct costs. Costs of off-target effects are minimized for a construct with Cas9HF1, a high-fidelity version of Cas9. We further demonstrate that using Cas9HF1 instead of standard Cas9 in a homing drive achieves similar drive conversion efficiency. Our results suggest that gene drives should be designed with high-fidelity endonucleases and may have implications for other applications that involve genomic integration of CRISPR endonucleases.
1
Citation7
0
Save
0

Multiple loci of small effect confer wide variability in efficiency and resistance rate of CRISPR gene drive

Jackson Champer et al.Oct 19, 2018
ABSTRACT Gene drives could allow for control of vector-borne diseases by directly suppressing vector populations or spreading genetic payloads designed to reduce pathogen transmission. CRISPR homing gene drives work by cleaving wild-type alleles, which are then converted to drive alleles by homology-directed repair, increasing the frequency of the drive in a population. However, resistance alleles can form when end-joining repair takes place in lieu of homology-directed repair. Such alleles cannot be converted to drive alleles, which would halt the spread of a drive through a population. To investigate the effects of natural genetic variation on resistance formation, we developed a CRISPR homing gene drive in Drosophila melanogaster and crossed it into the genetically diverse Drosophila Genetic Reference Panel (DGRP) lines, measuring several performance parameters. Most strikingly, resistance allele formation post-fertilization in the early embryo ranged from 7% to 79% among lines and averaged 42±18%. We performed a Genome-Wide Association Study (GWAS) using our results in the DGRP lines and found that the resistance and conversion rates were polygenic, with several genetic polymorphisms showing relatively weak association. RNAi knockdown of several of these genes confirmed their effect, but their small effect sizes implies that their manipulation will yield only modest improvements to the efficacy of gene drives.
0
Citation5
0
Save
0

Novel CRISPR/Cas9 gene drive constructs in Drosophila reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations

Jackson Champer et al.Feb 27, 2017
A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Though CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.
0

Maximum likelihood estimation of fitness components in experimental evolution

Jingxian Liu et al.Jun 14, 2018
Estimating fitness differences between allelic variants is a central goal of experimental evolution. Current methods for inferring selection from allele frequency time series typically assume that evolutionary dynamics at the locus of interest can be described by a fixed selection coefficient. However, fitness is an aggregate of several components including mating success, fecundity, and viability, and distinguishing between these components could be critical in many scenarios. Here we develop a flexible maximum likelihood framework that can disentangle different components of fitness and estimate them individually in males and females from genotype frequency data. As a proof-of-principle, we apply our method to experimentally-evolved cage populations of Drosophila melanogaster, in which we tracked the relative frequencies of a loss-of-function and wild-type allele of yellow. This X-linked gene produces a recessive yellow phenotype when disrupted and is involved in male courtship ability. We find that the fitness costs of the yellow phenotype take the form of substantially reduced mating preference of wild-type females for yellow males, together with a modest reduction in the viability of yellow males and females. Our framework should be generally applicable to situations where it is important to quantify fitness components of specific genetic variants, including quantitative characterization of the population dynamics of CRISPR gene drives.
0

Resistance is futile: A CRISPR homing gene drive targeting a haplolethal gene

Jackson Champer et al.May 27, 2019
Engineered gene drives are being explored as a potential strategy for the control of vector-borne diseases due to their ability to rapidly spread genetic modifications through a population. While an effective CRISPR homing gene drive for population suppression has recently been demonstrated in mosquitoes, formation of resistance alleles that prevent Cas9 cleavage remains the major obstacle for drive strategies aiming at population modification, rather than elimination. Here, we present a homing drive in Drosophila melanogaster that reduces resistance allele formation below detectable levels by targeting a haplolethal gene with two gRNAs while also providing a rescue allele. This is because any resistance alleles that form by end-joining repair will typically disrupt the haplolethal target gene, rendering the individuals carrying them nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals. These results show that a haplolethal homing drive can be a highly effective tool for population modification.
0

Reducing resistance allele formation in CRISPR gene drives

Jackson Champer et al.Jun 14, 2017
CRISPR gene drives can efficiently convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. This mechanism could be used, for example, to rapidly disseminate a genetic payload through a population, promising novel strategies for the control of vector-borne diseases. However, all CRISPR gene drives tested have produced significant quantities of resistance alleles that cannot be converted to drive alleles and would likely prevent these drives from spreading in a natural population. In this study, we assessed three strategies for reducing resistance allele formation. First, we directly compared drives with the nanos and vasa promoters, which showed that the vasa drive produced high levels of resistance alleles in somatic cells. This was not observed in the nanos drive. Another strategy was the addition of a second gRNA to the drive, which both significantly increased the drive conversion efficiency and reduced the formation rate of resistance alleles. Finally, to minimize maternal carryover of Cas9, we assessed the performance of an autosomal drive acting in the male germline, and found no subsequent formation of resistance alleles in embryos. Our results mark a step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further reduction of resistance rates.