VV
Véronique Vitart
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(55% Open Access)
Cited by:
15,075
h-index:
102
/
i10-index:
239
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Georg Ehret et al.Sep 9, 2011
Compared to other common complex diseases, it has proved remarkably difficult to establish the genetic basis of blood-pressure elevation. A multi-stage genome-wide association study involving 200,000 individuals of European descent provides some of the missing detail in the genetic picture. The study identified 16 relevant loci, of which only 6 contain genes previously known or suspected to regulate blood pressure. An association was found between hypertension, the thickness of the left ventricular wall, stroke and coronary artery disease, but not kidney disease or kidney function. Comparison with data from more than 75,000 people of East Asian, South Asian and African ancestries confirmed that many of the variants identified in European-ancestry subjects also influence blood pressure in other populations. Blood pressure is a heritable trait1 influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure)2. Even small increments in blood pressure are associated with an increased risk of cardiovascular events3. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3–GUCY1B3, NPR3–C5orf23, ADM, FURIN–FES, GOSR2, GNAS–EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
0
Citation1,948
0
Save
0

Genome-wide association study of blood pressure and hypertension

Daniel Levy et al.May 10, 2009
Daniel Levy and colleagues report a meta-analysis of genome-wide association studies for blood pressure traits as part of the CHARGE consortium, reporting eight loci with replicated association to systolic and/or diastolic blood pressure, with one of these loci also associated to hypertension. Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 × 10−7. The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 × 10−8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.
0
Citation1,323
0
Save
0

Genetic mechanisms of critical illness in COVID-19

Erola Pairo‐Castineira et al.Dec 11, 2020
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
0
Citation1,291
0
Save
0

Runs of Homozygosity in European Populations

Ruth McQuillan et al.Sep 1, 2008
Estimating individual genome-wide autozygosity is important both in the identification of recessive disease variants via homozygosity mapping and in the investigation of the effects of genome-wide homozygosity on traits of biomedical importance. Approaches have tended to involve either single-point estimates or rather complex multipoint methods of inferring individual autozygosity, all on the basis of limited marker data. Now, with the availability of high-density genome scans, a multipoint, observational method of estimating individual autozygosity is possible. Using data from a 300,000 SNP panel in 2618 individuals from two isolated and two more-cosmopolitan populations of European origin, we explore the potential of estimating individual autozygosity from data on runs of homozygosity (ROHs). Termed Froh, this is defined as the proportion of the autosomal genome in runs of homozygosity above a specified length. Mean Froh distinguishes clearly between subpopulations classified in terms of grandparental endogamy and population size. With the use of good pedigree data for one of the populations (Orkney), Froh was found to correlate strongly with the inbreeding coefficient estimated from pedigrees (r = 0.86). Using pedigrees to identify individuals with no shared maternal and paternal ancestors in five, and probably at least ten, generations, we show that ROHs measuring up to 4 Mb are common in demonstrably outbred individuals. Given the stochastic variation in ROH number, length, and location and the fact that ROHs are important whether ancient or recent in origin, approaches such as this will provide a more useful description of genomic autozygosity than has hitherto been possible. Estimating individual genome-wide autozygosity is important both in the identification of recessive disease variants via homozygosity mapping and in the investigation of the effects of genome-wide homozygosity on traits of biomedical importance. Approaches have tended to involve either single-point estimates or rather complex multipoint methods of inferring individual autozygosity, all on the basis of limited marker data. Now, with the availability of high-density genome scans, a multipoint, observational method of estimating individual autozygosity is possible. Using data from a 300,000 SNP panel in 2618 individuals from two isolated and two more-cosmopolitan populations of European origin, we explore the potential of estimating individual autozygosity from data on runs of homozygosity (ROHs). Termed Froh, this is defined as the proportion of the autosomal genome in runs of homozygosity above a specified length. Mean Froh distinguishes clearly between subpopulations classified in terms of grandparental endogamy and population size. With the use of good pedigree data for one of the populations (Orkney), Froh was found to correlate strongly with the inbreeding coefficient estimated from pedigrees (r = 0.86). Using pedigrees to identify individuals with no shared maternal and paternal ancestors in five, and probably at least ten, generations, we show that ROHs measuring up to 4 Mb are common in demonstrably outbred individuals. Given the stochastic variation in ROH number, length, and location and the fact that ROHs are important whether ancient or recent in origin, approaches such as this will provide a more useful description of genomic autozygosity than has hitherto been possible.
0
Citation1,024
0
Save
0

Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

Iris Heid et al.Oct 10, 2010
Cecilia Lindgren and colleagues report results of a large-scale genome-wide association study for waist-to-hip ratio, a measure of body fat distribution. They identify 13 new loci associated with this trait, several of which show stronger effects in women than in men. Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
0
Citation913
0
Save
0

Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts

Yurii Aulchenko et al.Dec 7, 2008
Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797-22,562 persons, aged 18-104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 x 10(-8)), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 x 10(-11); LDL, P = 2.6 x 10(-10)), TMEM57 (TC, P = 5.4 x 10(-10)), CTCF-PRMT8 region (HDL, P = 8.3 x 10(-16)), DNAH11 (LDL, P = 6.1 x 10(-9)), FADS3-FADS2 (TC, P = 1.5 x 10(-10); LDL, P = 4.4 x 10(-13)) and MADD-FOLH1 region (HDL, P = 6 x 10(-11)). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.
0
Citation846
0
Save
Load More