TP
Thanneer Perumal
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(18% Open Access)
Cited by:
1,032
h-index:
23
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gene expression elucidates functional impact of polygenic risk for schizophrenia

Menachem Fromer et al.Sep 26, 2016
+55
S
P
M
The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of subjects with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, they found that ∼20% of schizophrenia loci have variants that may contribute to altered gene expression and liability. Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
0
Citation1,027
0
Save
0

Identifying and ranking potential driver genes of Alzheimer’s Disease using multi-view evidence aggregation

Sumit Mukherjee et al.Jan 29, 2019
+6
K
T
S
ABSTRACT Motivation Late onset Alzheimers disease (LOAD) is currently a disease with no known effective treatment options. To address this, there have been a recent surge in the generation of multi-modality data (Hodes and Buckholtz, 2016; Mueller et al ., 2005) to understand the biology of the disease and potential drivers that causally regulate it. However, most analytic studies using these data-sets focus on uni-modal analysis of the data. Here we propose a data-driven approach to integrate multiple data types and analytic outcomes to aggregate evidences to support the hypothesis that a gene is a genetic driver of the disease. The main algorithmic contributions of our paper are: i) A general machine learning framework to learn the key characteristics of a few known driver genes from multiple feature-sets and identifying other potential driver genes which have similar feature representations, and ii) A flexible ranking scheme with the ability to integrate external validation in the form of Genome Wide Association Study (GWAS) summary statistics. While we currently focus on demonstrating the effectiveness of the approach using different analytic outcomes from RNA-Seq studies, this method is easily generalizable to other data modalities and analysis types. Results We demonstrate the utility of our machine learning algorithm on two benchmark multi-view datasets by significantly outperforming the baseline approaches in predicting missing labels. We then use the algorithm to predict and rank potential drivers of Alzheimers. We show that our ranked genes show a significant enrichment for SNPs associated with Alzheimers, and are enriched in pathways that have been previously associated with the disease. Availability Source code and link to all feature sets is availabile at https://github.com/Sage-Bionetworks/EvidenceAggregatedDriverRanking . Contact ben.logsdon@sagebionetworks.org
0
Citation5
0
Save
0

Unperturbed Expression Bias of Imprinted Genes in Schizophrenia

Attila Gulyás-Kovács et al.May 24, 2018
+21
E
I
A
How gene expression correlates with schizophrenia across individuals is beginning to be examined through analyses of RNA-seq from post-mortem brains of individuals with disease and control brains. Here we focus on variation in allele-specific expression, following up on the CommonMind Consortium (CMC) RNA-seq experiments of nearly 600 human dorsolateral prefrontal cortex (DLPFC) samples. Analyzing the extent of allelic expression bias---a hallmark of imprinting---we find that the number of imprinted human genes is consistent with lower estimates (approx. 0.5% of all genes) and thus contradicts much higher estimates. Moreover, the handful of putatively imprinted genes are all in close genomic proximity to known imprinted genes. Joint analysis of the imprinted genes across hundreds of individuals allowed us to establish how allelic bias depends on various factors. We find that age and genetic ancestry have gene-specific, differential effect on allelic bias. In contrast, allelic bias appears to be independent of schizophrenia.
0

Meta-analysis of the human brain transcriptome identifies heterogeneity across human AD coexpression modules robust to sample collection and methodological approach

Benjamin Logsdon et al.Jan 3, 2019
+41
V
T
B
Alzheimer's disease (AD) is a complex and heterogenous brain disease that affects multiple inter-related biological processes. This complexity contributes, in part, to existing difficulties in the identification of successful disease-modifying therapeutic strategies. To address this, systems approaches are being used to characterize AD-related disruption in molecular state. To evaluate the consistency across these molecular models, a consensus atlas of the human brain transcriptome was developed through coexpression meta-analysis across the AMP-AD consortium. Consensus analysis was performed across five coexpression methods used to analyze RNA-seq data collected from 2114 samples across 7 brain regions and 3 research studies. From this analysis, five consensus clusters were identified that described the major sources of AD-related alterations in transcriptional state that were consistent across studies, methods, and samples. AD genetic associations, previously studied AD-related biological processes, and AD targets under active investigation were enriched in only three of these five clusters. The remaining two clusters demonstrated strong heterogeneity between males and females in AD-related expression that was consistently observed across studies. AD transcriptional modules identified by systems analysis of individual AMP-AD teams were all represented in one of these five consensus clusters except ROS/MAP-identified Module 109, which was specific for genes that showed the strongest association with changes in AD-related gene expression across consensus clusters. The other two AMP-AD transcriptional analyses reported modules that were enriched in one of the two sex-specific Consensus Clusters. The fifth cluster has not been previously identified and was enriched for genes related to proteostasis. This study provides an atlas to map across biological inquiries of AD with the goal of supporting an expansion in AD target discovery efforts.
0

A novel systems biology approach to evaluate mouse models of late-onset Alzheimer’s disease

Christoph Preuß et al.Jun 26, 2019
+13
A
E
C
Background Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes.Results This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of three mouse models based on LOAD genetics, carrying APOE4 and TREM2*R47H alleles, demonstrated overlaps with distinct human AD modules that, in turn, are functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq shows strong correlation between gene expression changes independent of experimental platform.Conclusions Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.
0

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

Solveig Sieberts et al.May 17, 2019
+18
N
X
S
The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes), and provide the results as a community resource. We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. In addition, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a common resource for use across the community in research programs. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
0

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Solveig Sieberts et al.Jan 16, 2020
+42
M
J
S
Mobile health, the collection of data using wearables and sensors, is a rapidly growing field in health research with many applications. Deriving validated measures of disease and severity that can be used clinically or as outcome measures in clinical trials, referred to as digital biomarkers, has proven difficult. In part due to the complicated analytical approaches necessary to develop these metrics. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of Parkinson’s Disease (PD) and severity of three PD symptoms: tremor, dyskinesia and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC=0.87), as well as tremor (best AUPR=0.75), dyskinesia (best AUPR=0.48) and bradykinesia (best AUPR=0.95) severity.
0

Mortality prediction in sepsis via gene expression analysis: a community approach

Timothy Sweeney et al.Dec 19, 2016
+23
H
G
T
Improved risk stratification and prognosis in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here three scientific groups were invited to independently generate prognostic models for 30-day mortality using 12 discovery cohorts (N=650) containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance was validated in 5 cohorts of community-onset sepsis patients (N=189) in which the models showed summary AUROCs ranging from 0.765-0.89. Similar performance was observed in 4 cohorts of hospital-acquired sepsis (N=282). Combining the new gene-expression-based prognostic models with prior clinical severity scores led to significant improvement in prediction of 30-day mortality (p<0.01). These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis, improving both resource allocation and prognostic enrichment in clinical trials.
0

Co-localization of Conditional eQTL and GWAS Signatures in Schizophrenia

Amanda Dobbyn et al.Apr 25, 2017
+17
J
L
A
Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which SNPs underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissecting this signal into multiple independent eQTL for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (N=467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context specific (i.e. tissue, cell type, or developmental time point specific) regulation of gene expression. Integrating the Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC conditional eQTL data reveals forty loci with strong evidence for co-localization (posterior probability >0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes and identify novel genes for schizophrenia risk, and provide specific hypotheses for their functional follow-up. Note: Eli A. Stahl and Solveig K. Sieberts are co-corresponding authors
0

Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

Menachem Fromer et al.May 9, 2016
+56
H
T
M
Over 100 genetic loci harbor schizophrenia associated variants, yet how these common variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating the largest publicly available resource to date of gene expression and its genetic regulation; ~5 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the schizophrenia risk loci have common variants that could explain regulation of brain gene expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential expression between cases and controls, 44% show some evidence for differential expression. All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly polygenic, as has been reported in investigations of common and rare genetic variation. Co-expression analyses identify a gene module that shows enrichment for genetic associations and is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic interpretations of genetic liability for schizophrenia and other brain diseases.
Load More