MP
Mette Peters
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(69% Open Access)
Cited by:
5,185
h-index:
37
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gene expression elucidates functional impact of polygenic risk for schizophrenia

Menachem Fromer et al.Sep 26, 2016
The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of subjects with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, they found that ∼20% of schizophrenia loci have variants that may contribute to altered gene expression and liability. Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
0
Citation1,027
0
Save
0

Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder

Michael Gandal et al.Dec 13, 2018
INTRODUCTION Our understanding of the pathophysiology of psychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), lags behind other fields of medicine. The diagnosis and study of these disorders currently depend on behavioral, symptomatic characterization. Defining genetic contributions to disease risk allows for biological, mechanistic understanding but is challenged by genetic complexity, polygenicity, and the lack of a cohesive neurobiological model to interpret findings. RATIONALE The transcriptome represents a quantitative phenotype that provides biological context for understanding the molecular pathways disrupted in major psychiatric disorders. RNA sequencing (RNA-seq) in a large cohort of cases and controls can advance our knowledge of the biology disrupted in each disorder and provide a foundational resource for integration with genomic and genetic data. RESULTS Analysis across multiple levels of transcriptomic organization—gene expression, local splicing, transcript isoform expression, and coexpression networks for both protein-coding and noncoding genes—provides an in-depth view of ASD, SCZ, and BD molecular pathology. More than 25% of the transcriptome exhibits differential splicing or expression in at least one disorder, including hundreds of noncoding RNAs (ncRNAs), most of which have unexplored functions but collectively exhibit patterns of selective constraint. Changes at the isoform level, as opposed to the gene level, show the largest effect sizes and genetic enrichment and the greatest disease specificity. We identified coexpression modules associated with each disorder, many with enrichment for cell type–specific markers, and several modules significantly dysregulated across all three disorders. These enabled parsing of down-regulated neuronal and synaptic components into a variety of cell type– and disease-specific signals, including multiple excitatory neuron and distinct interneuron modules with differential patterns of disease association, as well as common and rare genetic risk variant enrichment. The glial-immune signal demonstrates shared disruption of the blood-brain barrier and up-regulation of NFkB-associated genes, as well as disease-specific alterations in microglial-, astrocyte-, and interferon-response modules. A coexpression module associated with psychiatric medication exposure in SCZ and BD was enriched for activity-dependent immediate early gene pathways. To identify causal drivers, we integrated polygenic risk scores and performed a transcriptome-wide association study and summary-data–based Mendelian randomization. Candidate risk genes—5 in ASD, 11 in BD, and 64 in SCZ, including shared genes between SCZ and BD—are supported by multiple methods. These analyses begin to define a mechanistic basis for the composite activity of genetic risk variants. CONCLUSION Integration of RNA-seq and genetic data from ASD, SCZ, and BD provides a quantitative, genome-wide resource for mechanistic insight and therapeutic development at Resource.PsychENCODE.org. These data inform the molecular pathways and cell types involved, emphasizing the importance of splicing and isoform-level gene regulatory mechanisms in defining cell type and disease specificity, and, when integrated with genome-wide association studies, permit the discovery of candidate risk genes. The PsychENCODE cross-disorder transcriptomic resource. Human brain RNA-seq was integrated with genotypes across individuals with ASD, SCZ, BD, and controls, identifying pervasive dysregulation, including protein-coding, noncoding, splicing, and isoform-level changes. Systems-level and integrative genomic analyses prioritize previously unknown neurogenetic mechanisms and provide insight into the molecular neuropathology of these disorders.
0
Citation985
0
Save
1

A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research

Philip Jager et al.Aug 7, 2018
Abstract We initiated the systematic profiling of the dorsolateral prefrontal cortex obtained from a subset of autopsied individuals enrolled in the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP), which are jointly designed prospective studies of aging and dementia with detailed, longitudinal cognitive phenotyping during life and a quantitative, structured neuropathologic examination after death. They include over 3,322 subjects. Here, we outline the first generation of data including genome-wide genotypes ( n =2,090), whole genome sequencing ( n =1,179), DNA methylation ( n =740), chromatin immunoprecipitation with sequencing using an anti-Histone 3 Lysine 9 acetylation (H3K9Ac) antibody ( n =712), RNA sequencing ( n =638), and miRNA profile ( n =702). Generation of other omic data including ATACseq, proteomic and metabolomics profiles is ongoing. Thanks to its prospective design and recruitment of older, non-demented individuals, these data can be repurposed to investigate a large number of syndromic and quantitative neuroscience phenotypes. The many subjects that are cognitively non-impaired at death also offer insights into the biology of the human brain in older non-impaired individuals.
1
Citation407
0
Save
0

Transcriptome and epigenome landscape of human cortical development modeled in organoids

Anahita Amiri et al.Dec 14, 2018
INTRODUCTION The human cerebral cortex has undergone an extraordinary increase in size and complexity during mammalian evolution. Cortical cell lineages are specified in the embryo, and genetic and epidemiological evidence implicates early cortical development in the etiology of neuropsychiatric disorders such as autism spectrum disorder (ASD), intellectual disabilities, and schizophrenia. Most of the disease-implicated genomic variants are located outside of genes, and the interpretation of noncoding mutations is lagging behind owing to limited annotation of functional elements in the noncoding genome. RATIONALE We set out to discover gene-regulatory elements and chart their dynamic activity during prenatal human cortical development, focusing on enhancers, which carry most of the weight upon regulation of gene expression. We longitudinally modeled human brain development using human induced pluripotent stem cell (hiPSC)–derived cortical organoids and compared organoids to isogenic fetal brain tissue. RESULTS Fetal fibroblast–derived hiPSC lines were used to generate cortically patterned organoids and to compare oganoids’ epigenome and transcriptome to that of isogenic fetal brains and external datasets. Organoids model cortical development between 5 and 16 postconception weeks, thus enabling us to study transitions from cortical stem cells to progenitors to early neurons. The greatest changes occur at the transition from stem cells to progenitors. The regulatory landscape encompasses a total set of 96,375 enhancers linked to target genes, with 49,640 enhancers being active in organoids but not in mid-fetal brain, suggesting major roles in cortical neuron specification. Enhancers that gained activity in the human lineage are active in the earliest stages of organoid development, when they target genes that regulate the growth of radial glial cells. Parallel weighted gene coexpression network analysis (WGCNA) of transcriptome and enhancer activities defined a number of modules of coexpressed genes and coactive enhancers, following just six and four global temporal patterns that we refer to as supermodules, likely reflecting fundamental programs in embryonic and fetal brain. Correlations between gene expression and enhancer activity allowed stratifying enhancers into two categories: activating regulators (A-regs) and repressive regulators (R-regs). Several enhancer modules converged with gene modules, suggesting that coexpressed genes are regulated by enhancers with correlated patterns of activity. Furthermore, enhancers active in organoids and fetal brains were enriched for ASD de novo variants that disrupt binding sites of homeodomain, Hes1, NR4A2, Sox3, and NFIX transcription factors. CONCLUSION We validated hiPSC-derived cortical organoids as a suitable model system for studying gene regulation in human embryonic brain development, evolution, and disease. Our results suggest that organoids may reveal how noncoding mutations contribute to ASD etiology. Summary of the study, analyses, and main results. Data were generated for iPSC-derived human telencephalic organoids and isogenic fetal cortex. Organoids modeled embryonic and early fetal cortex and show a larger repertoire of enhancers. Enhancers could be divided into activators and repressors of gene expression. We derived networks of modules and supermodules with correlated gene and enhancer activities, some of which were implicated in autism spectrum disorders (ASD).
0
Citation258
0
Save
10

Comprehensive identification of somatic nucleotide variants in human brain tissue

Yifan Wang et al.Oct 10, 2020
Abstract Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. Here, the Brain Somatic Mosaicism Network conducted a coordinated, multi-institutional study to: (i) examine the ability of existing methods to detect simulated somatic single nucleotide variants (SNVs) in DNA mixing experiments; (ii) generate multiple replicates of whole genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual; (iii) devise strategies to discover somatic SNVs; and (iv) apply various approaches to validate somatic SNVs. These efforts led to the identification of 43 bona fide somatic SNVs that ranged in variant allele fractions from ~0.005 to ~0.28. Guided by these results, we devised best practices for calling mosaic SNVs from 250X whole genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrated that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. Thus, this study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.
10
Citation5
0
Save
9

Sex differences in the human brain transcriptome of cases with schizophrenia

Gabriel Hoffman et al.Oct 7, 2020
Abstract While schizophrenia differs between males and females in age of onset, symptomatology and the course of the disease, the molecular mechanisms underlying these differences remain uncharacterized. In order to address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA-seq data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. Analysis across the cohorts identifies a reproducible gene expression signature of schizophrenia that is highly concordant with previous work. Differential expression across sex is reproducible across cohorts and identifies X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature is also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality and elucidate interactions among genes. We found enrichment of co-expression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involve a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.
9
Citation3
0
Save
Load More