AK
Alexandra Kueider‐Paisley
Author with expertise in Mechanisms of Multidrug Resistance in Cancer
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
727
h-index:
20
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome

Siamak MahmoudianDehkordi et al.Oct 15, 2018
Abstract Introduction Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut‐brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). Methods Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD‐related genetic variants, adjusting for confounders and multiple testing. Results In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α‐dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response–related genes implicated in AD showed associations with BA profiles. Discussion We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut‐liver‐brain axis in the pathogenesis of AD.
1
Citation463
0
Save
1

Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers

Kwangsik Nho et al.Oct 15, 2018
Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition.Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET).Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aβ1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05).This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.
1
Citation243
0
Save
0

Altered Bile Acid Profile Associates with Cognitive Impairment in Alzheimer’s Disease – An Emerging Role for Gut Microbiome

Siamak MahmoudianDehkordi et al.Mar 17, 2018
Abstract Introduction Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and specific role for the gut-brain axis in neurodegeneration. Bile acids (BA), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer disease (AD). Methods Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1,464 subjects including 370 cognitively normal older adults (CN), 284 with early mild cognitive impairment (MCI), 505 with late MCI, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for cofounders and multiple testing. Results In AD compared to CN, we observed significantly lower serum concentrations of a primary BA (cholic acid CA) and increased levels of the bacterially produced, secondary BA, deoxycholic acid (DCA), and its glycine and taurine conjugated forms. An increased ratio of DCA:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response related genes implicated in AD showed associations with BA profiles. Conclusion We report for the first time an association between altered BA profile, genetic variants implicated in AD and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut liver brain axis in the pathogenesis of AD.
0
Citation20
0
Save
0

Serum Metabolites Associated with Brain Amyloid Beta Deposition, Cognitive Dysfunction, and Alzheimer’s Disease Progression

Kwangsik Nho et al.Nov 27, 2020
Abstract RATIONALE Metabolomics in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort provides a powerful tool for mapping biochemical changes in AD, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-β deposition in AD. OBJECTIVES We examined 140 serum metabolites and their associations with brain amyloid-β deposition, cognition, and conversion from mild cognitive impairment (MCI) to AD. FINDINGS Serum-based targeted metabolite levels were measured in 1,531 ADNI participants. We performed association analysis of metabolites with brain amyloid-β deposition measured from [18F] Florbetapir PET scans. We identified nine metabolites as significantly associated with amyloid-β deposition after FDR-based multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-β accumulation. However, higher levels of seven phosphatidylcholines (PC) were associated with increased amyloid deposition. In addition, PC ae C44:4 was significantly associated with cognition and conversion from MCI to AD dementia. CONCLUSION Perturbations in PC and acylcarnitine metabolism may play a role in features intrinsic to AD including amyloid-β deposition and cognitive performance.
0
Citation1
0
Save
0

The Alzheimer’s Disease Metabolome: Effects of Sex and APOE ε4 genotype

Matthias Arnold et al.Apr 4, 2019
Recent studies have provided evidence that late-onset Alzheimer’s disease (AD) can in part be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD. They also both give rise to large metabolic differences, suggesting that metabolic aspects of AD pathogenesis may differ between males and females and between APOE ε4 carriers and non-carriers. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 140 metabolites measured in serum samples of 1,517 AD neuroimaging initiative subjects, with AD biomarkers for Aβ and tau pathology and neurodegeneration. We observed substantial sex differences in effects of 15 metabolites on AD biomarkers with partially overlapping differences for APOE ε4 status groups. These metabolites highlighted several group-specific alterations not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification by both variables uncovered further subgroup-specific metabolic effects limited to the group with presumably the highest AD risk: APOE ε4+ females. Pathways linked to the observed metabolic alterations suggest that females experience more expressed impairment of mitochondrial energy production in AD than males. These findings indicate that dissecting metabolic heterogeneity in AD pathogenesis may enable grading of the biomedical relevance of specific pathways for specific subgroups. Extending our approach beyond simple one- or two-fold stratification may thus guide the way to personalized medicine.Significance statement Research provides substantial evidence that late-onset Alzheimer’s disease (AD) is a metabolic disease. Besides age, female sex and APOEε4 genotype represent strong risk factors for AD, and at the same time give rise to large metabolic differences. Our systematic investigation of sex and APOE ε4 genotype differences in the link between metabolism and measures of pre-symptomatic AD using stratified analysis revealed several group-specific metabolic alterations that were not observed without sex and genotype stratification of the same cohort. Pathways linked to the observed metabolic alterations suggest females are more affected by impairment of mitochondrial energy production in AD than males, highlighting the importance of tailored treatment approaches towards a precision medicine approach.
0

Altered Bile Acid Profile in Mild Cognitive Impairment and Alzheimer's Disease: Relationship to Neuroimaging and CSF Biomarkers

Kwangsik Nho et al.Mar 18, 2018
Introduction: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimers disease (AD) including neuroinflammation and amyloid-beta deposition. Method: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n=1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the A/T/N (Amyloid, Tau and Neurodegeneration) biomarkers for AD: CSF biomarkers, atrophy (MRI), and brain glucose metabolism ([18F]FDG-PET). Results: Of 23 BA and relevant calculated ratios, three BA signatures were associated with CSF Aβ1-42 (A) and three with CSF p-tau181 (T) (corrected p<0.05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy (N), respectively (corrected p<0.05). Conclusion: This is the first study to show serum-based BA metabolites are associated with A/T/N AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.
0

Identifying differences in bile acid pathways for cholesterol clearance in Alzheimer’s disease using metabolic networks of human brain regions

Priyanka Baloni et al.Sep 26, 2019
Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction seen years before the emergence of clinical symptoms. Increasing evidence suggests a role for primary and secondary bile acids, the end-product of cholesterol metabolism, influencing pathophysiology in AD. In this study, we analyzed transcriptomes from 2114 post-mortem brain samples from three independent cohorts and identified that the genes involved in alternative bile acid synthesis pathway was expressed in brain compared to the classical pathway. These results were supported by targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals. We reconstructed brain region-specific metabolic networks using data from three independent cohorts to assess the role of bile acid metabolism in AD pathophysiology. Our metabolic network analysis suggested that taurine transport, bile acid synthesis and cholesterol metabolism differed in AD and cognitively normal individuals. Using the brain transcriptional regulatory network, we identified putative transcription factors regulating these metabolic genes and influencing altered metabolism in AD. Intriguingly, we find bile acids from the brain metabolomics whose synthesis cannot be explained by enzymes we find in the brain, suggesting they may originate from an external source such as the gut microbiome. These findings motivate further research into bile acid metabolism and transport in AD to elucidate their possible connection to cognitive decline.