JW
Joeri Wondergem
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Impact of neurite alignment on organelle motion

Maria Mytiliniou et al.Jul 26, 2021
Abstract Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, posing a need for deeper understanding of the involved mechanisms. Here, we used an experimental methodology that lead neurites of differentiated PC12 cells in either of two configurations: an one-dimensional, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a fiat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion in comparison to the situation where the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly we found that the swelling-induced mobility change affected each of the (sub-/super-) diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might be in part controlled by the extracellular matrix.
1
Citation2
0
Save
0

Chemotaxis and topotaxis add vectorially for amoeboid cell migration

Joeri Wondergem et al.Aug 14, 2019
Cells encounter a wide variety of physical and chemical cues when navigating their native environments. However, their response to multiple simultaneous cues is not yet clear. In particular, the influence of topography, in the presence of a chemotactic gradient, on their migratory behavior is understudied. Here, we investigate the effects of topographical guidance on highly motile amoeboid cell migration (topotaxis) generated by asymmetrically placed micropillars. The micropillar field allows for an additional, natural chemotactic gradient in two different directions, thereby revealing the relevance of topotaxis in the presence of cell migration directed by chemical gradients (chemotaxis). Interestingly, we found that the topotactic drift generated by the pillar field is conserved during chemotaxis. We show that the drifts generated by both these cues add up linearly. A coarse-grained analysis as a function of pillar spacing subsequently revealed that the strength and direction of the topotactic drift is determined by (i) the pore size, (ii) space between pores, and (iii) the effective diffusion constant of the cells. Finally, we argue that topotaxis must be conserved during chemotaxis, as it is an emergent property of both the asymmetric properties of the pillar field and the inherent stochasticity of (biased) amoeboid migration.
4

Effect of G4C2 Repeat Expansions on the Motion of Lysosomes Inside Neurites

Maria Mytiliniou et al.Oct 30, 2021
Abstract The G 4 C 2 hexanucleotide repeat expansion in the c9orf72 locus is one among a plethora of mutations associated with amyotrophic lateral sclerosis. It accounts for the majority of disease cases. The exact processes underlying the pathology of this mutation remain elusive, yet recent evidence suggests a mechanism that disrupts axonal trafficking. Here, we used a neuronal cell line with and without the G 4 C 2 repeats, and implemented time-resolved local mean squared displacement analysis to characterize the motion of lysosomes inside neurites. Neurites were either aligned along chemically patterned lines, or oriented randomly on the substrate. We confirmed that in the presence of the G 4 C 2 repeats, lysosome motion was affected. Lysosomes had a smaller reach exhibited lower velocity, especially inside aligned neurites. At the same time they became more active with increasing length of the G 4 C 2 repeats when the neurites were randomly oriented. The duration of diffusive and super-diffusive lysosome transport remained unaffected for both neurite geometries and for all lengths of the repeats, but the displacement and velocity was decreased on varying the repeat number and neurite geometry. Lastly, the ratio of anterograde/retrograde/neutral trajectories was affected disparately for the two neurite geometries. Our observations support the hypothesis that impaired axonal trafficking emerges in the presence of the G 4 C 2 hexanucleotide repeat expansion.