SC
Steven Cramer
Author with expertise in Principles and Interventions in Stroke Rehabilitation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(73% Open Access)
Cited by:
7,366
h-index:
92
/
i10-index:
267
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Harnessing neuroplasticity for clinical applications

Steven Cramer et al.Apr 10, 2011
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
0

A Functional MRI Study of Subjects Recovered From Hemiparetic Stroke

Steven Cramer et al.Dec 1, 1997
Background and Purpose Stroke recovery mechanisms remain incompletely understood, particularly for subjects with cortical stroke, in whom limited data are available. We used functional magnetic resonance imaging to compare brain activations in normal controls and subjects who recovered from hemiparetic stroke. Methods Functional magnetic resonance imaging was performed in ten stroke subjects with good recovery, five with deep, and five with cortical infarcts. Brain activation was achieved by index finger-tapping. Statistical parametric activation maps were obtained using a t test and a threshold of P <.001. In five bilateral motor regions, the volume of activated brain for each stroke subject was compared with the distribution of activation volumes among nine controls. Results Control subjects activated several motor regions. During recovered hand finger-tapping, stroke subjects activated the same regions as controls, often in a larger brain volume. In the unaffected hemisphere, sensorimotor cortex activation was increased in six of nine stroke subjects compared with controls. Cerebellar hemisphere contralateral and premotor cortex ipsilateral to this region, as well as supplementary motor areas, also had increased activation. In the stroke hemisphere, activation exceeding controls was uncommon, except that three of five cortical strokes showed peri-infarct activation foci. During unaffected hand finger-tapping, increased activation by stroke subjects compared with controls was uncommon; however, decreased activation was seen in unaffected sensorimotor cortex, suggesting that this region’s responsiveness increased to the ipsilateral hand and decreased to contralateral hand movements. Use of a different threshold for defining activation ( P <.01) did not change the overall findings (κ=.75). Conclusions Recovered finger-tapping by stroke subjects activated the same motor regions as controls but to a larger extent, particularly in the unaffected hemisphere. Increased reliance on these motor areas may represent an important component of motor recovery. Functional magnetic resonance imaging studies of subjects who recovered from stroke provide evidence for several processes that may be related to restoration of neurologic function.
0

Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events

Norihide Takaya et al.Feb 10, 2006
Background and Purpose— MRI is able to quantify carotid plaque size and composition with good accuracy and reproducibility and provides an opportunity to prospectively examine the relationship between plaque features and subsequent cerebrovascular events. We tested the hypothesis that the characteristics of carotid plaque, as assessed by MRI, are possible predictors of future ipsilateral cerebrovascular events. Methods— A total of 154 consecutive subjects who initially had an asymptomatic 50% to 79% carotid stenosis by ultrasound with ≥12 months of follow-up were included in this study. Multicontrast-weighted carotid MRIs were performed at baseline, and participants were followed clinically every 3 months to identify symptoms of cerebrovascular events. Results— Over a mean follow-up period of 38.2 months, 12 carotid cerebrovascular events occurred ipsilateral to the index carotid artery. Cox regression analysis demonstrated a significant association between baseline MRI identification of the following plaque characteristics and subsequent symptoms during follow-up: presence of a thin or ruptured fibrous cap (hazard ratio, 17.0; P ≤0.001), intraplaque hemorrhage (hazard ratio, 5.2; P =0.005), larger mean intraplaque hemorrhage area (hazard ratio for 10 mm 2 increase, 2.6; P =0.006), larger maximum %lipid-rich/necrotic core (hazard ratio for 10% increase, 1.6; P =0.004), and larger maximum wall thickness (hazard ratio for a 1-mm increase, 1.6; P =0.008). Conclusions— Among patients who initially had an asymptomatic 50% to 79% carotid stenosis, arteries with thinned or ruptured fibrous caps, intraplaque hemorrhage, larger maximum %lipid-rich/necrotic cores, and larger maximum wall thickness by MRI were associated with the occurrence of subsequent cerebrovascular events. Findings from this prospective study provide a basis for larger multicenter studies to assess the risk of plaque features for subsequent ischemic events.
0

Robot-based hand motor therapy after stroke

Craig Takahashi et al.Dec 22, 2007
Robots can improve motor status after stroke with certain advantages, but there has been less emphasis to date on robotic developments for the hand. The goal of this study was to determine whether a hand-wrist robot would improve motor function, and to evaluate the specificity of therapy effects on brain reorganization. Subjects with chronic stroke producing moderate right arm/hand weakness received 3 weeks therapy that emphasized intense active movement repetition as well as attention, speed, force, precision and timing, and included virtual reality games. Subjects initiated hand movements. If necessary, the robot completed movements, a feature available at all visits for seven of the subjects and at the latter half of visits for six of the subjects. Significant behavioural gains were found at end of treatment, for example, in Action Research Arm Test (34 +/- 20 to 38 +/- 19, P< 0.0005) and arm motor Fugl-Meyer score (45 +/- 10 to 52 +/- 10, P < 0.0001). Results suggest greater gains for subjects receiving robotic assistance in all sessions as compared to those receiving robotic assistance in half of sessions. The grasp task practiced during robotic therapy, when performed during functional MRI, showed increased sensorimotor cortex activation across the period of therapy, while a non-practiced task, supination/pronation, did not. A robot-based therapy showed improvements in hand motor function after chronic stroke. Reorganization of motor maps during the current therapy was task-specific, a finding useful when considering generalization of rehabilitation therapy.
0

Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment

Robert Sanchez et al.Sep 1, 2006
An important goal in rehabilitation engineering is to develop technology that allows individuals with severe motor impairment to practice arm movement without continuous supervision from a rehabilitation therapist. This paper describes the development of such a system, called Therapy WREX or ("T-WREX"). The system consists of an orthosis that assists in arm movement across a large workspace, a grip sensor that detects hand grip pressure, and software that simulates functional activities. The arm orthosis is an instrumented, adult-sized version of the Wilmington Robotic Exoskeleton (WREX), which is a five degrees-of-freedom mechanism that passively counterbalances the weight of the arm using elastic bands. After providing a detailed design description of T-WREX, this paper describes two pilot studies of the system's capabilities. The first study demonstrated that individuals with chronic stroke whose arm function is compromised in a normal gravity environment can perform reaching and drawing movements while using T-WREX. The second study demonstrated that exercising the affected arm of five people with chronic stroke with T-WREX over an eight week period improved unassisted movement ability (mean change in Fugl-Meyer score was 5 points plusmn2 SD; mean change in range of motion of reaching was 10%, p<0.001). These results demonstrate the feasibility of automating upper-extremity rehabilitation therapy for people with severe stroke using passive gravity assistance, a grip sensor, and simple virtual reality software
0
Citation351
0
Save
0

Brain activation during execution and motor imagery of novel and skilled sequential hand movements

Michael Lacourse et al.Jul 20, 2005
This experiment used functional magnetic resonance imaging (fMRI) to compare functional neuroanatomy associated with executed and imagined hand movements in novel and skilled learning phases. We hypothesized that 1 week of intensive physical practice would strengthen the motor representation of a hand motor sequence and increase the similarity of functional neuroanatomy associated with executed and imagined hand movements. During fMRI scanning, a right-hand self-paced button press sequence was executed and imagined before (NOVEL) and after (SKILLED) 1 week of intensive physical practice (n = 54; right-hand dominant). The mean execution rate was significantly faster in the SKILLED (3.8 Hz) than the NOVEL condition (2.5 Hz) (P < 0.001), but there was no difference in execution errors. Activation foci associated with execution and imagery was congruent in both the NOVEL and SKILLED conditions, though activation features were more similar in the SKILLED versus NOVEL phase. In the NOVEL phase, activations were more extensive during execution than imagery in primary and secondary cortical motor volumes and the cerebellum, while during imagery activations were greater in the striatum. In the SKILLED phase, activation features within these same volumes became increasingly similar for execution and imagery, though imagery more heavily activated premotor areas, inferior parietal lobe, and medial temporal lobe, while execution more heavily activated the precentral/postcentral gyri, striatum, and cerebellum. This experiment demonstrated congruent activation of the cortical and subcortical motor system during both novel and skilled learning phases, supporting the effectiveness of motor imagery-based mental practice techniques for both the acquisition of new skills and the rehearsal of skilled movements.
0

Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable

Lara Boyd et al.Jul 1, 2017
The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.
0
Paper
Citation295
0
Save
Load More