RC
R. Craddock
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
2
h-index:
10
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Neuro Bureau ADHD-200 Preprocessed Repository

Pierre Bellec et al.Jan 17, 2016
In 2011, the "ADHD-200 Global Competition" was held with the aim of identifying biomarkers of attention-deficit/hyperactivity disorder from resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals. Statisticians and computer scientists were potentially the most qualified for the machine learning aspect of the competition, but generally lacked the specialized skills to implement the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) (\url{http://www.nitrc.org/frs/?group_id=383}). This "ADHD-200 Preprocessed" release included multiple analytical pipelines to cater to different philosophies of data analysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks, fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey matter density maps. The data was used by several teams who competed in the ADHD-200 Global Competition, including the winning entry by a group of biostaticians. To the best of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of preprocessed resting-state fMRI and structural MRI data, and remains to this day the only resource featuring a battery of alternative processing paths.
0

A large, open source dataset of stroke anatomical brain images and manual lesion segmentations

Sook‐Lei Liew et al.Aug 26, 2017
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
0

Predicting brain-age from multimodal imaging data captures cognitive impairment

Franziskus Liem et al.Nov 7, 2016
The disparity between the chronological age of an individual and their brain-age measured based on biological information has the potential to offer clinically-relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan sample (N = 2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N = 475). Generalization performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future application to the early prediction of neurocognitive disorders.
0

U-Net Model for Brain Extraction: Trained on Humans for Transfer to Non-human Primates

Xindi Wang et al.Nov 20, 2020
Abstract Brain extraction (a.k.a. skull stripping) is a fundamental step in the neuroimaging pipeline as it can affect the accuracy of downstream preprocess such as image registration, tissue classification, etc. Most brain extraction tools have been designed for and applied to human data and are often challenged by non-human primates (NHP) data. Amongst recent attempts to improve performance on NHP data, deep learning models appear to outperform the traditional tools. However, given the minimal sample size of most NHP studies and notable variations in data quality, the deep learning models are very rarely applied to multi-site samples in NHP imaging. To overcome this challenge, we used a transfer-learning framework that leverages a large human imaging dataset to pretrain a convolutional neural network (i.e. U-Net Model), and then transferred this to NHP data using a small NHP training sample. The resulting transfer-learning model converged faster and achieved more accurate performance than a similar U-Net Model trained exclusively on NHP samples. We improved the generalizability of the model by upgrading the transfer-learned model using additional training datasets from multiple research sites in the Primate Data-Exchange (PRIME-DE) consortium. Our final model outperformed brain extraction routines from popular MRI packages (AFNI, FSL, and FreeSurfer) across a heterogeneous sample from multiple sites in the PRIME-DE with less computational cost (20s~10min). We also demonstrated the transfer-learning process enables the macaque model to be updated for use with scans from chimpanzees, marmosets, and other mammals (e.g. pig). Our model, code, and the skull-stripped mask repository of 136 macaque monkeys are publicly available for unrestricted use by the neuroimaging community at https://github.com/HumanBrainED/NHP-BrainExtraction .
0

The Preprocessed Connectomes Project Repository of Manually Corrected Skull-stripped T1-weighted Anatomical MRI Data.

Benjamin Puccio et al.Jul 31, 2016
Background: Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure is necessary for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually-corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Findings: Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on non local segmentation technique (BEaST) software and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was reiterated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Conclusion: Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve their preprocessing of the Neurofeedback data, and as training and testing data for developing new skull-stripping algorithms and evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.