RD
Rebecca Daly
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(94% Open Access)
Cited by:
2,264
h-index:
30
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses

Steven Blazewicz et al.Jul 4, 2013
M
R
R
S
Abstract Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the ‘active’ fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population’s growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies.
0
Citation750
0
Save
1

DRAM for distilling microbial metabolism to automate the curation of microbiome function

Michael Shaffer et al.Jul 22, 2020
+15
L
S
M
Abstract Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.
1
Citation565
0
Save
0

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux et al.Dec 17, 2018
+58
B
E
S
This paper presents standards and best practices for reporting genome sequences of uncultivated viruses. We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.
0
Citation490
0
Save
0

Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients

Michael Cox et al.Jun 23, 2010
+14
B
M
M
Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective "early" and "late" colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations.
0
Citation429
0
Save
56

Playing with FiRE: A genome resolved view of the soil microbiome responses to high severity forest wildfire

Nelson Aj et al.Aug 17, 2021
+16
X
R
N
Abstract Warming climate has increased the frequency and size of high severity wildfires in the western United States, with deleterious impacts on forest ecosystem resilience. Although forest soil microbiomes provide a myriad of ecosystem functions, little is known regarding the impact of high severity fire on microbially-mediated processes. Here, we characterized functional shifts in the soil microbiome (bacterial, fungal, and viral) across wildfire burn severity gradients one year post-fire in coniferous forests (Colorado and Wyoming, USA). We generated the Fi re R esponding E cogenomic database (FiRE-db), consisting of 637 metagenome-assembled bacterial genomes, 2490 viral populations, and 2 fungal genomes complemented by 12 metatranscriptomes from soils affected by low and high-severity, and complementary marker gene sequencing and metabolomics data. Actinobacteria dominated the fraction of enriched and active taxa across burned soils. Taxa within surficial soils impacted by high severity wildfire exhibited traits including heat resistance, sporulation and fast growth that enhanced post-fire survival. Carbon cycling within this system was predicted to be influenced by microbial processing of pyrogenic compounds and turnover of dominant bacterial community members by abundant viruses. These genome-resolved analyses across trophic levels reveal the complexity of post-fire soil microbiome activity and offer opportunities for restoration strategies that specifically target these communities.
56
Citation10
0
Save
125

DRAM for distilling microbial metabolism to automate the curation of microbiome function

Michael Shaffer et al.Jun 29, 2020
+15
B
M
M
ABSTRACT Microbial and viral communities transform the chemistry of Earth’s ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM ( D istilled and R efined A nnotation of M etabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles, and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.
125
Citation10
0
Save
0

A functional microbiome catalog crowdsourced from North American rivers

Mikayla Borton et al.Jul 22, 2023
+25
K
B
M
Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.
0
Citation5
0
Save
13

Human-gut phages harbor sporulation genes

David Schwartz et al.Jan 20, 2023
+4
R
M
D
ABSTRACT Spore-forming bacteria are prevalent in mammalian guts and have implications for host health and nutrition. The production of dormant spores is thought to play an important role in the colonization, persistence, and transmission of these bacteria. Spore formation also modifies interactions among microorganisms such as infection by phages. Recent studies suggest that phages may counter dormancy-mediated defense through the expression of phage-encoded sporulation genes during infection, which can alter the transitions between active and inactive states. By mining genomes and gut-derived metagenomes, we identified sporulation genes that are preferentially encoded by phages that infect spore-forming bacteria. These included genes involved in chromosome partitioning, DNA damage repair, and cell wall-associated functions. In addition, phages contained homologs of sporulation-specific transcription factors, notably spo0A , the master regulator of sporulation, which could allow phages to control the complex genetic network responsible for spore development. Our findings suggest that phages could influence the formation of bacterial spores with implications for the health of the human gut microbiome, as well as bacterial communities in other environments. SIGNIFICANCE Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance their fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host for nutrition or energy production. However, phage fitness is affected by all aspects of host physiology, including decisions that reduce metabolic activity of the cell. Here we focus on endosporulation, a complex and ancient form of dormancy found among the Bacillota that involves hundreds of genes. By coupling homology searches with host classification, we identify 31 phage-encoded homologs of sporulation genes that are mostly limited to phages infecting spore-forming bacteria. Nearly one-third the homologs recovered were regulatory genes suggesting that phages may manipulate host genetic networks by tapping into their control elements. Our findings also suggest a mechanism by which phages can overcome the defensive strategy of dormancy, which may be involved in coevolutionary dynamics of spore-forming bacteria.
13
Citation2
0
Save
17

Exposing New Taxonomic Variation with Inflammation – A Murine Model-Specific Genome Database for Gut Microbiome Researchers

Ikaia Leleiwi et al.Oct 24, 2022
+9
M
J
I
Abstract Background The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. Results Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella -infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~42.4 Gbps/sample), we reconstructed 2,281 bacterial and 4,129 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes . Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation resistant strains. Conclusions This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella- induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally.
17
Citation2
0
Save
0

Mapping the soil microbiome functions shaping wetland methane emissions

Angela Oliverio et al.Feb 7, 2024
+21
J
A
A
Accounting for only 8% of Earth's land coverage, freshwater wetlands remain the foremost contributor to global methane emissions. Yet the microorganisms and processes underlying methane emissions from wetland soils remain poorly understood. Over a five-year period, we surveyed the microbial membership and in situ methane measurements from over 700 samples in one of the most prolific methane-emitting wetlands in the United States. We constructed a catalog of 2,502 metagenome-assembled genomes (MAGs), with nearly half of the 72 bacterial and archaeal phyla sampled containing novel lineages. Integration of these data with 133 soil metatranscriptomes provided a genome-resolved view of the biogeochemical specialization and versatility expressed in wetland soils. Centimeter-scale depth differences best explained patterns of microbial community structure and transcribed functionalities, even more so than land coverage or temporal information. Moreover, while extended flooding restructured soil redox, this perturbation failed to reconfigure the transcriptional profiles of methane cycling microorganisms, contrasting with theoretical expected responses to hydrological perturbations. Co-expression analyses coupled to depth resolved methane measurements exposed the metabolisms and trophic structures most predictive of methane hotspots. This compendium of biogeochemically-classified genomes and their spatiotemporal transcriptional patterns begins to untangle the microbial carbon, energy and nutrient processing contributing to soil methane production.
0
Paper
Citation1
0
Save
Load More