JO
José Otero
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
500
h-index:
23
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation

Zhaogang Yang et al.Dec 16, 2019
+26
J
J
Z
Exosomes are attractive as nucleic-acid carriers because of their favourable pharmacokinetic and immunological properties and their ability to penetrate physiological barriers that are impermeable to synthetic drug-delivery vehicles. However, inserting exogenous nucleic acids, especially large messenger RNAs, into cell-secreted exosomes leads to low yields. Here we report a cellular-nanoporation method for the production of large quantities of exosomes containing therapeutic mRNAs and targeting peptides. We transfected various source cells with plasmid DNAs and stimulated the cells with a focal and transient electrical stimulus that promotes the release of exosomes carrying transcribed mRNAs and targeting peptides. Compared with bulk electroporation and other exosome-production strategies, cellular nanoporation produced up to 50-fold more exosomes and a more than 103-fold increase in exosomal mRNA transcripts, even from cells with low basal levels of exosome secretion. In orthotopic phosphatase and tensin homologue (PTEN)-deficient glioma mouse models, mRNA-containing exosomes restored tumour-suppressor function, enhanced inhibition of tumour growth and increased survival. Cellular nanoporation may enable the use of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation. A cellular-nanoporation method produces large quantities of exosomes containing therapeutic mRNAs and targeting peptides that restore tumour-suppressor function in mice with orthotopically implanted phosphatase and tensin homologue (PTEN)-deficient brain gliomas.
0
Citation489
0
Save
11

Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning

Yuzhou Chang et al.Jul 9, 2021
+18
Y
J
Y
Abstract Spatially resolved transcriptomics provides a new way to define spatial contexts and understand biological functions in complex diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonation often cannot be revealed and localized due to the limited capacities of associating spatial information. We present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given inputs as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with a spatial retained graph neural network from the spatial transcriptomics. The embedding is then visualized by mapping as color channels in an RGB image and segmented with a supervised convolutional neural network model. Based on a benchmark of sixteen 10x Genomics Visium spatial transcriptomics datasets on the human cortex, RESEPT infers and visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize cortex layers and cell types based on a pre-defined region-or cell-type-specific genes and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer’s disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer applications.
1

DNA-caged Nanoparticles via Electrostatic Self-Assembly

Elizabeth Jergens et al.Nov 7, 2022
+6
Y
S
E
Abstract DNA-modified nanoparticles enable DNA sensing and therapeutics in nanomedicine and are also crucial for nanoparticle self-assembly with DNA-based materials. However, methods to conjugate DNA to nanoparticle surfaces are limited, inefficient, and lack control. Inspired by DNA tile nanotechnology, we demonstrate a new approach to nanoparticle modification based on electrostatic attraction between negatively charged DNA tiles and positively charged nanoparticles. This approach does not disrupt nanoparticle surfaces and leverages the programmability of DNA nanotechnology to control DNA presentation. We demonstrated this approach using a variety of nanoparticles, including polymeric micelles, polystyrene beads, gold nanoparticles, and superparamagnetic iron oxide nanoparticles with sizes ranging from 5-20 nm in diameter. DNA cage formation was confirmed through transmission electron microscopy (TEM), neutralization of zeta potential, and a series of fluorescence experiments. DNA cages present “handle” sequences that can be used for reversible target attachment or self-assembly. Handle functionality was verified in solution, at the solid-liquid interface, and inside fixed cells, corresponding to applications in biosensing, DNA microarrays, and erasable immunocytochemistry. These experiments demonstrate the versatility of the electrostatic DNA caging approach and provide a new pathway to nanoparticle modification with DNA that will empower further applications of these materials in medicine and materials science.
1

Phox2bmutation mediated byAtoh1expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia

Carmen Ferreira et al.Aug 10, 2021
+5
T
C
C
Abstract Retrotrapezoid nucleus (RTN) neurons are involved in central chemoreception and respiratory control. Lineage tracing studies demonstrate RTN neurons to be derived from Phox2b and Atoh1 expressing progenitor cells in rhombere 4. Phox2b exon 3 mutations cause congenital central hypoventilation syndrome (CCHS), producing an impaired respiratory response to hypercapnia and hypoxia. Our goal was to investigate the extent to which a conditional mutation of Phox2b within Atoh1 -derived cells might affect a) respiratory rhythm; b) ventilatory responses to hypercapnia and hypoxia and c) number of RTN-chemosensitive neurons. Here, we used a transgenic mouse line carrying a conditional Phox2b Δ8 mutation activated by cre-recombinase. We crossed them with Atoh1 Cre mice. Ventilation was measured by whole body plethysmograph during neonate and adult life. In room air, experimental and control groups showed similar basal ventilation; however, Atoh1 Cre /Phox2b Δ8 increased breath irregularity. The hypercapnia and hypoxia ventilatory responses were impaired in neonates. In contrast, adult mice recovered ventilatory response to hypercapnia, but not to hypoxia. Anatomically, we observed a reduction of the Phox2b + /TH − expressing neurons within the RTN region. Our data indicates that conditionally expression of Phox2b mutation by Atoh1 affect development of the RTN neurons and are essential for the activation of breathing under hypoxic and hypercapnia condition, providing new evidence for mechanisms related to CCHS neuropathology.