HK
Hindrik Kerstens
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
2,823
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

A. Ramos et al.Aug 4, 2009
The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay.A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274.Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
0
Citation733
0
Save
6

Trecode: a FAIR eco-system for the analysis and archiving of omics data in a combined diagnostic and research setting

Hindrik Kerstens et al.Nov 16, 2020
Abstract Motivation The increase in speed, reliability and cost-effectiveness of high-throughput sequencing has led to the widespread clinical application of genome (WGS), exome (WXS) and transcriptome analysis. WXS and RNA sequencing is now being implemented as standard of care for patients and for patients included in clinical studies. To keep track of sample relationships and analyses, a platform is needed that can unify metadata for diverse sequencing strategies with sample metadata whilst supporting automated and reproducible analyses. In essence ensuring that analysis is conducted consistently, and data is Findable, Accessible, Interoperable and Reusable (FAIR). Results We present “Trecode”, a framework that records both clinical and research sample (meta) data and manages computational genome analysis workflows executed for both settings. Thereby achieving tight integration between analyses results and sample metadata. With complete, consistent and FAIR (meta) data management in a single platform, stacked bioinformatic analyses are performed automatically and tracked by the database ensuring data provenance, reproducibility and reusability which is key in worldwide collaborative translational research. Availability and implementation The Trecode data model, codebooks, NGS workflows and client programs are currently being cleared from local compute infrastructure dependencies and will become publicly available in spring 2021. Contact p.kemmeren@prinsesmaximacentrum.nl
4

Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS

Ianthe Belzen et al.Sep 1, 2021
Abstract Background Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products, but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. Results We developed Fusion-sq to detect tumor-specific gene fusions by integrating and “fusing” evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure. In a pediatric pan-cancer cohort of 130 patients, we identified 165 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions, and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterised by underlying SVs or expression changes indicative of activating or disruptive effects. Conclusions Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific fusions for future clinical decision making.
4
Citation5
0
Save
0

Comparative analysis of neutrophil and monocyte epigenomes

Daniel Rico et al.Dec 22, 2017
Neutrophils and monocytes provide a first line of defense against infections as part of the innate immune system. Here we report the integrated analysis of transcriptomic and epigenetic landscapes for circulating monocytes and neutrophils with the aim to enable downstream interpretation and functional validation of key regulatory elements in health and disease. We collected RNA-seq data, ChIP-seq of six histone modifications and of DNA methylation by bisulfite sequencing at base pair resolution from up to 6 individuals per cell type. Chromatin segmentation analyses suggested that monocytes have a higher number of cell-specific enhancer regions (4-fold) compared to neutrophils. This highly plastic epigenome is likely indicative of the greater differentiation potential of monocytes into macrophages, dendritic cells and osteoclasts. In contrast, most of the neutrophil-specific features tend to be characterized by repressed chromatin, reflective of their status as terminally differentiated cells. Enhancers were the regions where most of differences in DNA methylation between cells were observed, with monocyte-specific enhancers being generally hypomethylated. Monocytes show a substantially higher gene expression levels than neutrophils, in line with epigenomic analysis revealing that gene more active elements in monocytes. Our analyses suggest that the overexpression of c-Myc in monocytes and its binding to monocyte-specific enhancers could be an important contributor to these differences. Altogether, our study provides a comprehensive epigenetic chart of chromatin states in primary human neutrophils and monocytes, thus providing a valuable resource for studying the regulation of the human innate immune system.
0

Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors

Ianthe Belzen et al.Jan 1, 2023
Background: In pediatric cancer, structural variants (SVs) and copy number alterations can contribute to cancer initiation and progression, and hence aid diagnosis and treatment stratification. The few studies into complex rearrangements have found associations with tumor aggressiveness or poor outcome. Yet, their prevalence and biological relevance across pediatric solid tumors remains unknown. Results: In a cohort of 120 primary tumors, we systematically characterized patterns of extrachromosomal DNA, chromoplexy and chromothripsis across five pediatric solid cancer types: neuroblastoma, Ewing sarcoma, Wilms tumor, hepatoblastoma and rhabdomyosarcoma. Complex SVs were identified in 56 tumors (47%) and different classes occurred across multiple cancer types. Recurrently mutated regions tend to be cancer-type specific and overlap with cancer genes, suggesting that selection contributes to shaping the SV landscape. In total, we identified potentially pathogenic complex SVs in 42 tumors that affect cancer driver genes or result in unfavorable chromosomal alterations. Half of which were known drivers, e.g. MYCN amplifications due to ecDNA and EWSR1::FLI1 fusions due to chromoplexy. Recurrent novel candidate complex events include chromoplexy in WT1 in Wilms tumors, focal chromothripsis with 1p loss in hepatoblastomas and complex MDM2 amplifications in rhabdomyosarcomas. Conclusions: Complex SVs are prevalent and pathogenic in pediatric solid tumors. They represent a type of genomic variation which currently remains unexplored. Moreover, carrying complex SVs seems to be associated with adverse clinical events. Our study highlights the potential for complex SVs to be incorporated in risk stratification or exploited for targeted treatments.