TW
Tobias Walther
Author with expertise in Lipid Metabolism and Storage in Organisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
20
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
36

An open-access volume electron microscopy atlas of whole cells and tissues

C. Xu et al.Nov 14, 2020
+18
G
S
C
Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometer resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations inasmuch as they only visualize a single slice or a relatively small volume of the cell, respectively. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) demonstrated the ability to image cellular samples at 4-nm isotropic voxels with rather limited imageable volume. Here, we present 3D EM images of whole cells and tissues with two orders of magnitude increases in imageable volume at 4-nm voxels. Such data with a combined fine resolution scale and large sample size do not currently exist, and are enabled by the advances in higher precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning. More importantly, we have generated a volume EM atlas encompassing ten diverse datasets of whole cells and tissues, from cancer cells to immune cells, and from mouse pancreatic islets to Drosophila neural tissues. These open-access data (via OpenOrganelle) represent a foundation to nucleate a new field of high-resolution whole-cell volume EM and subsequent analyses, and invite biologists to explore this new paradigm and pose fundamentally new questions.
36
Paper
Citation9
0
Save
14

The structure, catalytic mechanism, and inhibitor identification of phosphatidylinositol remodeling MBOAT7

Kun Wang et al.Sep 15, 2022
+8
X
C
K
Abstract Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O -acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. Further, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-Terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.
14
Citation3
0
Save
42

Seipin forms a flexible cage at lipid droplet formation sites

Henning Arlt et al.Aug 6, 2021
+9
X
F
H
SUMMARY Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with yet unclear function. Here, we report a structure of yeast seipin based on cryo-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data suggest a model for LD formation in which a closed seipin cage enables TG phase separation and subsequently switches to an open conformation to allow LD growth and budding.
42
Citation3
0
Save
68

The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology

Niklas Mejhert et al.Jun 9, 2021
+10
N
R
N
SUMMARY Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes mellitus, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines large datasets from systematic analyses of LD biology. Here we integrate high-confidence, systematically generated data on studies of LDs in the framework of an online platform named the Lipid Droplet Knowledge Portal . This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This new resource is a powerful platform that can be utilized to uncover new determinants of lipid storage. HIGHLIGHTS ■ The LD-Portal is a resource combining datasets from systematic analyses in LD biology ■ The LD-Portal allows users to query genetic, proteomic, and phenotypic aspects of LD biology ■ The LD-Portal can be used to discover new facets of lipid storage and LD biology ■ A crucial function of MSRB3 is uncovered in cholesterol ester storage in LDs
68
Citation2
0
Save
6

Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane

Siyoung Kim et al.Dec 6, 2021
+4
H
J
S
ABSTRACT Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix (HH) and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin’s functions in protein-lipid interactions, lipid diffusion, and LD maturation. All-atom (AA) simulations indicate that most seipin TM segment residues located in the phospholipid (PL) tail region of the bilayer attract TG. We also find seipin TM segments control lipid diffusion and permeation into the protein complex. Simulating larger, growing LDs with coarse-grained (CG) models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin’s TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.
6
Citation1
0
Save
1

Mice lacking triglyceride synthesis enzymes in adipose tissue are resistant to diet-induced obesity

Chandramohan Chitraju et al.May 5, 2022
+5
B
K
C
SUMMARY Triglycerides (TG) in adipocytes provide the major stores of metabolic energy in the body. Optimal amounts of TG stores are desirable as insufficient capacity to store TG, as in lipodystrophy, or exceeding the capacity for storage, as in obesity, results in metabolic disease. We hypothesized that mice lacking TG storage in adipocytes would result in excess TG storage in cell types other than adipocytes and severe lipotoxicity accompanied by metabolic disease. To test this hypothesis, we selectively deleted both TG-synthesis enzymes, DGAT1 and DGAT2, in adipocytes (ADGAT DKO mice). As expected with depleted energy stores, ADGAT DKO mice did not tolerate fasting well and, with prolonged fasting, entered torpor. However, ADGAT DKO mice were unexpectedly otherwise metabolically healthy and did not accumulate TGs ectopically or develop associated metabolic perturbations, even when fed a high-fat diet. The favorable metabolic phenotype resulted from activation of energy expenditure, in part via BAT activation and beiging of white adipose tissue. Thus, the ADGAT DKO mice provide a fascinating new model to study the coupling of metabolic energy storage to energy expenditure.
1
Citation1
0
Save
1

Key Factors Governing Initial Stages of Lipid Droplet Formation

Siyoung Kim et al.Nov 13, 2021
+2
R
C
S
ABSTRACT Lipid droplets (LDs) are neutral lipid storage organelles surrounded by a phospholipid (PL) monolayer. LD biogenesis from the endoplasmic reticulum (ER) is driven by phase separation of neutral lipids, overcoming surface tension and membrane deformation. However, the core biophysics of the initial steps of LD formation remain relatively poorly understood. Here, we use a tunable, phenomenological coarse-grained (CG) model to study triacylglycerol (TG) nucleation in a bilayer membrane. We show that PL rigidity has a strong influence on TG lensing and membrane remodeling: When membrane rigidity increases, TG clusters remain more planar with high anisotropy but a minor degree of phase nucleation. This finding is confirmed by free energy sampling simulations that calculate the potential of mean force (PMF) as a function of the degree of nucleation and anisotropy. We also show that asymmetric tension, controlled by the number of PLs on each membrane leaflet, determines the budding direction. A TG lens buds in the direction of the monolayer containing excess PLs to allow for better PL coverage of TG, consistent with reported experiments. Finally, two governing mechanisms of the LD growth, Ostwald ripening and merging, are observed. Taken together, this study characterizes the interplay between two thermodynamic quantities during the initial LD phases, the TG bulk free energy and membrane remodeling energy.
1
Citation1
0
Save
0

Conditional targeting of phosphatidylserine decarboxylase to lipid droplets

Santosh Kumar et al.Oct 22, 2020
+2
C
T
S
Abstract Phosphatidylethanolamine is an abundant component of most cellular membranes whose physical and chemical properties modulate multiple aspects of organelle membrane dynamics. An evolutionarily ancient mechanism for producing phosphatidylethanolamine is to decarboxylate phosphatidylserine and the enzyme catalyzing this reaction, phosphatidylserine decarboxylase, localizes to the inner membrane of the mitochondrion. We characterize a second form of phosphatidylserine decarboxylase, termed PISD-LD, that is generated by alternative splicing of PISD pre-mRNA and localizes to lipid droplets and to mitochondria. Sub-cellular targeting is controlled by a common segment of PISD-LD that is distinct from the catalytic domain and is regulated by nutritional state. Growth conditions that promote neutral lipid storage in lipid droplets favors targeting to lipid droplets, while targeting to mitochondria is favored by conditions that promote consumption of lipid droplets. Depletion of both forms of phosphatidylserine decarboxylase impairs triacylglycerol synthesis when cells are challenged with free fatty acid, indicating a crucial role phosphatidylserine decarboxylase in neutral lipid storage. The results reveal a previously unappreciated role for phosphatidylserine decarboxylase in lipid droplet biogenesis.
17

Fitm2 is required for ER homeostasis and normal function of murine liver

Laura Bond et al.May 25, 2022
+5
O
T
L
ABSTRACT The ER-resident protein fat-inducing transcript 2 (FIT2) catalyzes acyl-CoA cleavage in vitro and is required for endoplasmic reticulum (ER) homeostasis and normal lipid storage in cells. The gene encoding FIT2 is essential for the viability of mice and worms. Whether FIT2 acts as an acyl-CoA diphosphatase in vivo and how this activity affects liver, where the protein was discovered, are unknown. Here, we report that hepatocyte-specific Fitm2 knockout (FIT2-LKO) mice exhibited elevated acyl-CoA levels, ER stress, and signs of liver injury. FIT2-LKO mice fed a chow diet had more triglycerides in their livers than control littermates due, in part, to impaired secretion of triglyceride-rich lipoproteins and reduced capacity for fatty acid oxidation. Challenging FIT2-LKO mice with a high-fat diet to increase FIT2 acyl-CoA substrates worsened hepatic ER stress and liver injury, but unexpectedly reversed the steatosis phenotype, similar to what is observed in FIT2-deficient cells loaded with fatty acids. Our findings support the model that FIT2 acts as an acyl-CoA diphosphatase in vivo and is crucial for normal hepatocyte function and ER homeostasis in murine liver.
0

FIT2 is a lipid phosphate phosphatase crucial for endoplasmic reticulum homeostasis

Michel Becuwe et al.Mar 29, 2018
+7
T
M
M
The endoplasmic reticulum (ER) protein Fat-Induced Transcript 2 (FIT2) has emerged as a key factor in lipid droplet (LD) formation, although its molecular function is unknown. Highlighting its importance, FIT2 orthologs are essential in worms and mice, and FIT2 deficiency causes a deafness/dystonia syndrome in humans. Here we show that FIT2 is a lipid phosphate phosphatase (LPP) enzyme that is required for maintaining the normal structure of the ER. Recombinant FIT2 exhibits LPP activity in vitro and loss of this activity in cells leads to ER membrane morphological changes and ER stress. Defects in LD formation in FIT2 depletion appear to be secondary to membrane lipid abnormalities, possibly due to alterations in phospholipids required for coating forming LDs. Our findings uncover an enzymatic role for FIT2 in ER lipid metabolism that is crucial for ER membrane homeostasis.