Polymyxin B and E (colistin) have been pivotal in the treatment of extensively drug-resistant (XDR) Gram-negative bacterial infections, with increasing use over the past decade. Unfortunately, resistance to these antibiotics is rapidly emerging. The structurally-related octapeptin C4 (OctC4) has shown significant potency against XDR bacteria, including against polymyxin-resistant (Pmx-R) strains, but its mode of action remains undefined. We sought to compare and contrast the acquisition of XDR Klebsiella pneumoniae (ST258) resistance in vitro with all three lipopeptides to help elucidate the mode of action of the drugs and potential mechanisms of resistance evolution. Strikingly, 20 days of exposure to the polymyxins resulted in a dramatic (1000-fold) increase in the minimum inhibitory concentration (MIC) for the polymyxins, reflecting the evolution of resistance seen in clinical isolates, whereas for OctC4 only a 4-fold increase was witnessed. There was no cross-resistance observed between the polymyxin- and octapeptin-induced resistant strains. Sequencing revealed previously known gene alterations for polymyxin resistance, including crrB, mgrB, pmrB, phoPQ and yciM, and novel mutations in qseC. In contrast, mutations in mlaDF and pqiB, genes related to phospholipid transport, were found in octapeptin-resistant isolates. Mutation effects were validated via complementation assays. These genetic variations were reflected in phenotypic changes to lipid A. Pmx-R isolates increased 4-amino-4-deoxy-arabinose fortification to phosphate groups of lipid A, whereas OctC4 induced strains harbored a higher abundance of hydroxymyristate and palmitoylate. The results reveal a differing mode of action compared to polymyxins which provides hope for future therapeutics to combat the increasingly threat of XDR bacteria.