AE
Alysha Elliott
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
351
h-index:
32
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The macrocyclizing protease butelase 1 remains auto-catalytic and reveals the structural basis for ligase activity

Amy James et al.Jul 30, 2018
Abstract Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform seed storage protein maturation upon cleavage dependent auto-activation in the low pH environment of storage vacuoles. AEPs have attracted attention for their macrocyclization reactions and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show butelase 1 retains cleavage functions in vitro and in vivo . The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide binding region are the source of its efficient macrocyclization. All considered, it seems either butelase 1 has not fully specialized or a requirement for auto-catalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.
0
Citation5
0
Save
0

Scaffolding and Completing Genome Assemblies in Real-time with Nanopore Sequencing

Minh Cao et al.May 22, 2016
Genome assemblies obtained from short read sequencing technologies are often fragmented into many contigs because of the abundance of repetitive sequences. Long read sequencing technologies allow the generation of reads spanning most repeat sequences, providing the opportunity to complete these genome assemblies. However, substantial amounts of sequence data and computational resources are required to overcome the high per-base error rate inherent to these technologies. Furthermore, most existing methods only assemble the genomes after sequencing has completed which could result in either generation of more sequence data at greater cost than required or a low-quality assembly if insufficient data are generated. Here we present the first computational method which utilises real-time nanopore sequencing to scaffold and complete short-read assemblies while the long read sequence data is being generated. The method reports the progress of completing the assembly in real-time so users can terminate the sequencing once an assembly of sufficient quality and completeness is obtained. We use our method to complete four bacterial genomes and one eukaryotic genome, and show that it is able to construct more complete and more accurate assemblies, and at the same time, requires less sequencing data and computational resources than existing pipelines. We also demonstrate that the method can facilitate real-time analyses of positional information such as identification of bacterial genes encoded in plasmids and pathogenicity islands.
0

Multifactorial Chromosomal Variants Regulate Polymyxin Resistance In Extensively Drug-Resistant Klebsiella pneumoniae

Miranda Pitt et al.May 8, 2017
Extensively drug-resistant Klebsiella pneumoniae (XDR-KP) infections cause high mortality and are disseminating globally. Identifying the genetic basis underpinning resistance allows for rapid diagnosis and treatment. XDR isolates sourced from Greece and Brazil, including nineteen polymyxin-resistant and five polymyxin-susceptible strains, underwent whole genome sequencing. Approximately 90% of polymyxin resistance was enabled by alterations upstream or within mgrB. The most common mutation identified was an insertion at nucleotide position 75 in mgrB via an ISKpn26-like element in the ST258 lineage and ISKpn13 in one ST11 isolate. Three strains acquired an IS1 element upstream of mgrB and another strain had an ISKpn25 insertion at 133 bp. Other isolates had truncations (C28STOP, Q30STOP) or a missense mutation (D31E) affecting mgrB. Complementation assays revealed all mgrB perturbations contributed to resistance. Missense mutations in phoQ (T281M, G385C) were also found to facilitate resistance. Several variants in phoPQ co-segregating with the ISKpn26-like insertion were identified as potential partial suppressor mutations. Three ST258 samples were found to contain subpopulations with different resistance conferring mutations, including the ISKpn26-like insertion colonising with a novel mutation in pmrB (P158R), both confirmed via complementation assays. We also characterized a new multi-drug resistant Klebsiella quasipneumoniae strain ST2401 which was susceptible to polymyxins. These findings highlight the broad spectrum of chromosomal modifications which can facilitate and regulate resistance against polymyxins in K. pneumoniae.
0

Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION sequencing

Minh Cao et al.May 15, 2015
The recently introduced Oxford Nanopore MinION platform generates DNA sequence data in real-time. This opens immense potential to shorten the sample-to-results time and is likely to lead to enormous benefits in rapid diagnosis of bacterial infection and identification of drug resistance. However, there are very few tools available for streaming analysis of real-time sequencing data. Here, we present a framework for streaming analysis of MinION real-time sequence data, together with probabilistic streaming algorithms for species typing, multi-locus strain typing, gene presence strain-typing and antibiotic resistance profile identification. Using three culture isolate samples as well as a mixed-species sample, we demonstrate that bacterial species and strain information can be obtained within 30 minutes of sequencing and using about 500 reads, initial drug-resistance profiles within two hours, and complete resistance profiles within 10 hours. Multi-locus strain typing required more than 15x coverage to generate confident assignments, whereas gene-presence typing could detect the presence of a known strain with 0.5x coverage. We also show that our pipeline can process over 100 times more data than the current throughput of the MinION on a desktop computer.