ED
Eske Derks
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(53% Open Access)
Cited by:
2,888
h-index:
58
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

Phil Lee et al.Dec 1, 2019
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.
0
Citation1,090
0
Save
0

A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis

Andries Marees et al.Feb 27, 2018
Abstract Objectives Genome‐wide association studies (GWAS) have become increasingly popular to identify associations between single nucleotide polymorphisms (SNPs) and phenotypic traits. The GWAS method is commonly applied within the social sciences. However, statistical analyses will need to be carefully conducted and the use of dedicated genetics software will be required. This tutorial aims to provide a guideline for conducting genetic analyses. Methods We discuss and explain key concepts and illustrate how to conduct GWAS using example scripts provided through GitHub ( https://github.com/MareesAT/GWA_tutorial/ ) . In addition to the illustration of standard GWAS, we will also show how to apply polygenic risk score (PRS) analysis. PRS does not aim to identify individual SNPs but aggregates information from SNPs across the genome in order to provide individual‐level scores of genetic risk. Results The simulated data and scripts that will be illustrated in the current tutorial provide hands‐on practice with genetic analyses. The scripts are based on PLINK, PRSice, and R, which are commonly used, freely available software tools that are accessible for novice users. Conclusions By providing theoretical background and hands‐on experience, we aim to make GWAS more accessible to researchers without formal training in the field.
0
Citation587
0
Save
0

The Relationship of DNA Methylation with Age, Gender and Genotype in Twins and Healthy Controls

Marco Boks et al.Aug 25, 2009
Cytosine-5 methylation within CpG dinucleotides is a potentially important mechanism of epigenetic influence on human traits and disease. In addition to influences of age and gender, genetic control of DNA methylation levels has recently been described. We used whole blood genomic DNA in a twin set (23 MZ twin-pairs and 23 DZ twin-pairs, N = 92) as well as healthy controls (N = 96) to investigate heritability and relationship with age and gender of selected DNA methylation profiles using readily commercially available GoldenGate bead array technology. Despite the inability to detect meaningful methylation differences in the majority of CpG loci due to tissue type and locus selection issues, we found replicable significant associations of DNA methylation with age and gender. We identified associations of genetically heritable single nucleotide polymorphisms with large differences in DNA methylation levels near the polymorphism (cis effects) as well as associations with much smaller differences in DNA methylation levels elsewhere in the human genome (trans effects). Our results demonstrate the feasibility of array-based approaches in studies of DNA methylation and highlight the vast differences between individual loci. The identification of CpG loci of which DNA methylation levels are under genetic control or are related to age or gender will facilitate further studies into the role of DNA methylation and disease.
0
Citation356
0
Save
0

Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

Lea Davis et al.Oct 24, 2013
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.
0
Citation319
0
Save
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
0

Sex differences in the genetic architecture of obsessive-compulsive disorder

Ekaterina Khramtsova et al.Nov 21, 2017
Abstract Obsessive-compulsive disorder (OCD), a highly heritable complex phenotype, demonstrates sexual dimorphism in age of onset and clinical presentation, suggesting a possible sex difference in underlying genetic architecture. We present the first genome-wide characterization of the sex-specific genetic architecture of OCD, utilizing the largest set of OCD cases and controls available from the Psychiatric Genomics Consortium. We assessed evidence for several mechanisms that may contribute to sexual-dimorphism including a sexually dimorphic liability threshold, the presence of individual sex-specific risk variants on the autosomes and the X chromosome, genetic and phenotypic heterogeneity, and sex-specific pleiotropic effects. We observed a strong genetic correlation between male and female OCD and no evidence for a sexually dimorphic liability threshold model. While we did not detect any sex-specific genome-wide associations, we observed that the SNPs with sexually dimorphic effects showed an enrichment of regulatory variants influencing expression of genes in immune tissues. Furthermore, top sex-specific genome-wide associations were enriched for regulatory variants in different tissues, suggesting evidence for potential sex difference in the biology underlying risk for OCD. These findings suggest that future studies with larger sample sizes hold great promise for the identification of sex-specific risk factors for OCD, significantly advancing our understanding of the differences in the genetic basis of sexually dimorphic neuropsychiatric traits.
0
Citation1
0
Save
23

Polygenic Prediction of Molecular Traits using Large-Scale Meta-analysis Summary Statistics

Oliver Pain et al.Nov 25, 2022
Abstract Introduction Transcriptome-wide association study (TWAS) integrates expression quantitative trait loci (eQTL) data with genome-wide association study (GWAS) results to infer differential expression. TWAS uses multi-variant models trained using individual-level genotype-expression datasets, but methodological development is required for TWAS to utilise larger eQTL summary statistics. Methods TWAS models predicting gene expression were derived using blood-based eQTL summary statistics from eQTLGen, the Young Finns Study (YFS), and MetaBrain. Summary statistic polygenic scoring methods were used to derive TWAS models, evaluating their predictive utility in GTEx v8. We investigated gene inclusion criteria and omnibus tests for aggregating TWAS associations for a given gene. We performed a schizophrenia TWAS using summary statistic-based TWAS models, comparing results to existing resources and methods. Results TWAS models derived using eQTL summary statistics performed comparably to models derived using individual-level data. Multi-variant TWAS models significantly improved prediction over single variant models for 8.6% of genes. TWAS models derived using eQTLGen summary statistics significantly improved prediction over models derived using a smaller individual-level dataset. The eQTLGen-based schizophrenia TWAS, using the ACAT omnibus test to aggregate associations for each gene, identified novel significant and colocalised associations compared to summary-based mendelian randomisation (SMR) and SMR-multi. Conclusions Using multi-variant TWAS models and larger eQTL summary statistic datasets can improve power to detect differential expression associations. We provide TWAS models based on eQTLGen and MetaBrain summary statistics, and software to easily derive and apply summary statistic-based TWAS models based on eQTL and other molecular QTL datasets released in the future.
8

A systematic analysis of genetically regulated differences in gene expression and the role of co-expression networks across 16 psychiatric disorders and substance use phenotypes

Zachary Gerring et al.Jan 30, 2021
ABSTRACT Genome-wide association studies (GWASs) have identified thousands of risk loci for many psychiatric and substance use phenotypes, however the biological consequences of these loci remain largely unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 substance use phenotypes (collectively termed “mental health phenotypes”) using expression quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation due to predicted genetically regulated expression between pairs of mental health phenotypes, and compared the results with the genetic correlations. We identified 1,645 genes with at least one significant trait association, comprising 2,176 significant associations across the 16 mental health phenotypes of which 572 (26%) are novel. Overall, the transcriptomic correlations for phenotype pairs were significantly higher than the respective genetic correlations. For example, attention deficit hyperactivity disorder and autism spectrum disorder, both childhood developmental disorders, showed a much higher transcriptomic correlation (r=0.84) than genetic correlation (r=0.35). Finally, we tested the enrichment of phenotype-associated genes in gene co-expression networks built from prefrontal cortex. Phenotype-associated genes were enriched in multiple gene co-expression modules and the implicated modules contained genes involved in mRNA splicing and glutamatergic receptors, among others. Together, our results highlight the utility of gene expression data in the understanding of functional gene mechanisms underlying psychiatric disorders and substance use phenotypes.
0

The genetic architecture of substance use and its diverse correlations with mental health traits

Briar Wormington et al.Sep 16, 2024
Although harmful substance use is common and represented by shared symptom features and high genetic correlations, the underlying genetic relationships between substance use traits have not been fully explored. We have investigated the genetic architecture of substance use traits through exploratory and confirmatory factor analyses using genomic structural equation modeling (Genomic SEM), and explored genetic correlations between different aspects of substance use and mental health-related traits. Genomic SEM was used to identify latent factors representing the relationships between 14 substance use traits (alcohol, nicotine, cannabis and opioid use), and to confirm or modify existing latent factors for 38 mental health-related traits. A bi-factor model best explained the genetic overlap between substance use traits, including a general substance use factor and two sub-factors representing genetic liability specific to alcohol use or smoking. The SNP-based heritability of these factors ranged from 2 to 7 % and each factor had 10 or more independent significant SNPs identified. Bivariate correlations revealed patterns of genetic overlap with other mental health-related factors unique to each substance use factor. Variations in the genetic overlap between psychiatric traits and different aspects of substance use can be used to further investigate the pleiotropy present between these traits, and explore commonalities in etiology.
Load More