VB
Vincent Bonhomme
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
1,380
h-index:
40
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Breakdown of within- and between-network Resting State Functional Magnetic Resonance Imaging Connectivity during Propofol-induced Loss of Consciousness

Pierre Boveroux et al.Sep 30, 2010
+13
M
A
P
Background Mechanisms of anesthesia-induced loss of consciousness remain poorly understood. Resting-state functional magnetic resonance imaging allows investigating whole-brain connectivity changes during pharmacological modulation of the level of consciousness. Methods Low-frequency spontaneous blood oxygen level-dependent fluctuations were measured in 19 healthy volunteers during wakefulness, mild sedation, deep sedation with clinical unconsciousness, and subsequent recovery of consciousness. Results Propofol-induced decrease in consciousness linearly correlates with decreased corticocortical and thalamocortical connectivity in frontoparietal networks (i.e., default- and executive-control networks). Furthermore, during propofol-induced unconsciousness, a negative correlation was identified between thalamic and cortical activity in these networks. Finally, negative correlations between default network and lateral frontoparietal cortices activity, present during wakefulness, decreased proportionally to propofol-induced loss of consciousness. In contrast, connectivity was globally preserved in low-level sensory cortices, (i.e., in auditory and visual networks across sedation stages). This was paired with preserved thalamocortical connectivity in these networks. Rather, waning of consciousness was associated with a loss of cross-modal interactions between visual and auditory networks. Conclusions Our results shed light on the functional significance of spontaneous brain activity fluctuations observed in functional magnetic resonance imaging. They suggest that propofol-induced unconsciousness could be linked to a breakdown of cerebral temporal architecture that modifies both within- and between-network connectivity and thus prevents communication between low-level sensory and higher-order frontoparietal cortices, thought to be necessary for perception of external stimuli. They emphasize the importance of thalamocortical connectivity in higher-order cognitive brain networks in the genesis of conscious perception.
0

Brain Mechanisms of Propofol-Induced Loss of Consciousness in Humans: a Positron Emission Tomographic Study

Pierre Fiset et al.Jul 1, 1999
+6
T
T
P
In the present study, we used positron emission tomography to investigate changes in regional cerebral blood flow (rCBF) during a general anesthetic infusion set to produce a gradual transition from the awake state to unconsciousness. Five right-handed human volunteers participated in the study. They were given propofol with a computer-controlled infusion pump to achieve three stable levels of plasma concentrations corresponding to mild sedation, deep sedation, and unconsciousness, the latter defined as unresponsiveness to verbal commands. During awake baseline and each of the three levels of sedation, two scans were acquired after injection of an H215O bolus. Global as well as regional CBF were determined and correlated with propofol concentrations. In addition, blood flow changes in the thalamus were correlated with those of the entire scanned volume to determine areas of coordinated changes. In addition to a generalized decrease in global CBF, large regional decreases in CBF occurred bilaterally in the medial thalamus, the cuneus and precuneus, and the posterior cingulate, orbitofrontal, and right angular gyri. Furthermore, a significant covariation between the thalamic and midbrain blood flow changes was observed, suggesting a close functional relationship between the two structures. We suggest that, at the concentrations attained, propofol preferentially decreases rCBF in brain regions previously implicated in the regulation of arousal, performance of associative functions, and autonomic control. Our data support the hypothesis that anesthetics induce behavioral changes via a preferential, concentration-dependent effect on specific neuronal networks rather than through a nonspecific, generalized effect on the brain.
0

Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss of Consciousness

Mélanie Boly et al.May 16, 2012
+9
M
R
M
The mechanisms underlying anesthesia-induced loss of consciousness remain a matter of debate. Recent electrophysiological reports suggest that while initial propofol infusion provokes an increase in fast rhythms (from beta to gamma range), slow activity (from delta to alpha range) rises selectively during loss of consciousness. Dynamic causal modeling was used to investigate the neural mechanisms mediating these changes in spectral power in humans. We analyzed source-reconstructed data from frontal and parietal cortices during normal wakefulness, propofol-induced mild sedation, and loss of consciousness. Bayesian model selection revealed that the best model for explaining spectral changes across the three states involved changes in corticothalamic interactions. Compared with wakefulness, mild sedation was accounted for by an increase in thalamic excitability, which did not further increase during loss of consciousness. In contrast, loss of consciousness per se was accompanied by a decrease in backward corticocortical connectivity from frontal to parietal cortices, while thalamocortical connectivity remained unchanged. These results emphasize the importance of recurrent corticocortical communication in the maintenance of consciousness and suggest a direct effect of propofol on cortical dynamics.
1

Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness

Yonatan Perl et al.Jul 4, 2020
+12
I
C
Y
Abstract Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.
0

Propofol-Induced Unresponsiveness is Associated with Impaired Feedforward Connectivity in the Cortical Hierarchy

Robert Sanders et al.Nov 3, 2017
+11
O
J
R
Abstract Background Impaired consciousness has been associated with impaired cortical signal propagation following transcranial magnetic stimulation (TMS). Herein we hypothesized that the reduced current propagation under propofol-induced unresponsiveness is associated with changes in both feedforward and feedback connectivity across the cortical hierarchy. Methods Eight subjects underwent left occipital TMS coupled with high-density electroencephalograph (EEG) recordings during wakefulness and propofol-induced unconsciousness. Spectral analysis was applied to responses recorded from sensors overlying six hierarchical cortical sources involved in visual processing. Dynamic causal modelling (DCM) of evoked and induced source-space responses was used to investigate propofol’s effects on connectivity between regions. Results Propofol produced a wideband reduction in evoked power following TMS in five out of six electrodes. Bayesian Model Selection supported a DCM with hierarchical feedforward and feedback connections to best fit the data. DCM of induced responses revealed that the primary effect of propofol was impaired feedforward responses in cross frequency theta/alpha-gamma coupling and within frequency theta coupling (F contrast, Family Wise Error corrected p<0.05). An exploratory analysis (thresholded at uncorrected p<0.001) also suggested that propofol impaired feedforward and feedback beta band coupling. Posthoc analyses showed impairments in all feedforward connections and one feedback connection from parietal to occipital cortex. DCM of the evoked response potential showed impaired feedforward connectivity between left sided occipital and parietal cortex (T contrast p=0.004, Bonferroni corrected). Conclusions Our data suggest that propofol-induced loss of consciousness is associated with reduced evoked power and impaired hierarchical feedforward connectivity following occipital TMS.
20

Mapping Pharmacologically-induced Functional Reorganisation onto the Brain’s Neurotransmitter Landscape

Andrea Luppi et al.Jul 13, 2022
+24
A
S
A
Abstract To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain’s rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically-induced macroscale functional reorganisation, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from Positron Emission Tomography, and the regional changes in functional MRI connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, LSD, psilocybin, DMT, ayahuasca, MDMA, modafinil, and methylphenidate. Our results reveal that psychoactive drugs exert their effects on brain function by engaging multiple neurotransmitter systems. The effects of both anaesthetics and psychedelics on brain function are organised along hierarchical gradients of brain structure and function. Finally, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganisation of the brain’s functional architecture.
20
Citation3
0
Save
0

Ketamine-Induced Unresponsiveness Shows a Harmonic Shift from Global to Localised Functional Organisation.

M. Maldegem et al.Jun 25, 2024
+10
S
J
M
Abstract Ketamine is classified as a dissociative anaesthetic that, in sub-anaesthetic doses, can produce an altered state of consciousness characterised by dissociative symptoms, visual and auditory hallucinations, and perceptual distortions. Given the anaesthetic-like and psychedelic-like nature of this compound, it is expected to have different effects on brain dynamics in anaesthetic doses than in low, sub-anaesthetic doses. We investigated this question using connectome harmonic decomposition (CHD), a recently developed method to decompose brain activity in terms of the network organisation of the underlying human structural connectome. Previous research using this method has revealed connectome harmonic signatures of consciousness and responsiveness, with increased influence of global network structure in disorders of consciousness and propofol-induced sedation, and increased influence of localised patterns under the influence of classic psychedelics and sub-anaesthetic doses of ketamine, as compared to normal wakefulness. When we applied the CHD analytical framework to resting-state fMRI data of volunteers during ketamine-induced unresponsiveness, we found increased prevalence of localised harmonics, reminiscent of altered states of consciousness. This is different from traditional GABAergic sedation, where instead the prevalence of global rather than localised harmonics seems to increase with higher doses. In addition, we found that ketamine’s harmonic signature shows higher alignment with those seen in LSD- or psilocybin-induced psychedelic states than those seen in unconscious individuals, whether due to propofol sedation or brain injury. Together, the results indicate that ketamine-induced unresponsiveness, which does not necessarily suppress conscious experience, seems to influence the prevalence of connectome harmonics in the opposite way compared to GABAergic hypnotics. We conclude that the CHD framework offers the possibility to track alterations in conscious awareness (e.g., dreams, sensations) rather than behavioural responsiveness – a discovery made possible by ketamine’s unique property of decoupling these two facets.
0
Citation1
0
Save
7

How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness

Riku Ihalainen et al.Dec 21, 2020
+7
F
O
R
Abstract In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs – the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) – to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 minutes of high-density EEG recordings ( N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior “hot zone”, frontoparietal connections, and between-RSN connections. We estimate – for the first time – a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness. Highlights Modelling shows that connectivity within hot zone tracks change of conscious state Separately, frontoparietal connections support maintenance of conscious state Strength of frontoparietal connections predicts conscious state in unseen data Both parietal hot zone and frontoparietal connectivity important for consciousness Funding This work was supported by the UK Engineering and Physical Sciences Research Council (EP/P033199/1), Belgian National Funds for Scientific Research (FRS-FNRS), the University and University Hospital of Liege, the Fund Generet, the King Baudouin Foundation, the AstraZeneca Foundation, the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), DOCMA project (EU-H2020-MSCA–RISE–778234), the BIAL Foundation, the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the Center-TBI project (FP7-HEALTH-602150), the Public Utility Foundation ‘Université Européenne du Travail’, “Fondazione Europea di Ricerca Biomedica”, the Mind Science Foundation, the European Commission, and the Special Research Fund of Ghent University. O.G. is research associate and S.L. is research director at the F.R.S-FNRS. Declaration of interest None. Significance Statement Various connectivity studies have suggested multiple network-level mechanisms driving changes in the state of consciousness, such as the posterior hot zone, frontal-, and large-scale frontoparietal networks. Here, we computationally evaluate evidence for these mechanisms using dynamic causal modeling for resting EEG recorded before and during propofol-anaesthesia, and demonstrate that, particularly, connectivity in the posterior hot zone is impaired during propofol-induced unconsciousness. With a robust cross-validation paradigm, we show that connectivity in the large-scale frontoparietal networks can consistently predict the state of consciousness and further generalise these findings to an unseen state of recovery. These results suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.
4

Depth of sedation with dexmedetomidine modulates cortical excitability non-linearly

Paolo Cardone et al.Jun 7, 2021
+10
M
O
P
Abstract Background Cortical excitability changes across conscious states, being higher in unconsciousness compared to normal wakefulness. Anaesthesia offers controlled manipulation to investigate conscious processes and underlying brain dynamics. Among commonly used anaesthetic agents, dexmedetomidine (DEX) effects are not completely known. In this study, we investigated cortical excitability as a function of DEX sedation depth. Methods Transcranial magnetic stimulation coupled with electroencephalography was recorded in 20 healthy subjects undergoing DEX sedation in four conditions (baseline, light sedation, deep sedation, recovery). Frontal and parietal cortices were stimulated using a neuronavigation system. Cortical excitability was inferred by slope, amplitude, positive and negative peak latencies of the first component (0-30 ms) of the TMS-evoked potential. Four Generalized Linear Mixed Models (GLMM) were used to test the effect of condition and brain region over cortical excitability. Results Dexmedetomidine modulated amplitude (P<0.001), slope (P=0.0001) and positive peak (P=0.042), while the targeted brain region affected amplitude (P<0.001), slope (P<0.001), and negative peak (P=0.001). The interaction between dexmedetomidine and region had an effect over amplitude (P=0.004), and slope (P=0.009) such that cortical excitability was higher during all conditions where DEX was present as compared to the baseline. Conclusions Cortical excitability changes non-linearly as a function of the depth of DEX sedation, with a paradoxical non dose-dependent increase. The effect is region-specific, being present in the frontal but not in the parietal region. Future research should extend the current results with other anaesthetics to better understand the link between cortical excitability and depth of sedation.
0

A virtual clinical trial of psychedelics to treat patients with disorders of consciousness

Naji Alnagger et al.Aug 19, 2024
+15
C
P
N
Disorders of consciousness (DoC), including the unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS), have limited treatment options. Recent research suggests that psychedelic drugs, known for their complexity-enhancing properties, could be promising treatments for DoC. This study uses whole-brain computational models to explore this potential. We created individualised models for DoC patients, optimised with empirical fMRI and diffusion-weighted imaging (DWI) data, and simulated the administration of LSD and psilocybin. We used an in-silico perturbation protocol to distinguish between different states of consciousness, including DoC, anaesthesia, and the psychedelic state, and assess the dynamical stability of the brains of DoC patients pre- and post-psychedelic simulation. Our findings indicate that LSD and psilocybin shift DoC patients' brains closer to criticality, with a greater effect in MCS patients. In UWS patients, the treatment response correlates with structural connectivity, while in MCS patients, it aligns with baseline functional connectivity. This virtual clinical trial lays a computational foundation for using psychedelics in DoC treatment and highlights the future role of computational modelling in drug discovery and personalised medicine.
Load More