FW
Frederike Winkel
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
460
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Antidepressant drugs act by directly binding to TRKB neurotrophin receptors

Plínio Casarotto et al.Feb 18, 2021
+25
S
F
P
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
6
Citation444
1
Save
12

Optical TrkB activation in Parvalbumin interneurons regulates intrinsic states to orchestrate cortical plasticity

Frederike Winkel et al.Apr 28, 2020
+14
G
M
F
Abstract Activation state of Parvalbumin (PV) interneurons regulates neuronal plasticity, driving the closure of developmental critical periods and alternating between high and low plasticity states in response to experience in adulthood. We now show that PV plasticity states are regulated through the activation of TrkB neurotrophin receptors. Activation of an optically activatable TrkB (optoTrkB) specifically in PV interneurons switches adult cortical networks into a state of elevated plasticity within minutes by decreasing excitability of PV neurons. OptoTrkB activation induces changes in gene expression related to neuronal plasticity and excitability, and increases the phosphorylation of Kv3.1 channels. OptoTrkB activation shifted cortical networks towards a low PV configuration, promoting oscillatory synchrony and ocular dominance plasticity. Visual plasticity induced by fluoxetine was lost in mice lacking TrkB in PV neurons. Our data suggest a novel mechanism that dynamically regulates PV interneurons configuration state and orchestrates cortical networks during adulthood. Graphical Abstract
12
Citation5
0
Save
18

Optical activation of TrkB neurotrophin receptor in mouse ventral hippocampus promotes plasticity and facilitates fear extinction

Juzoh Umemori et al.Feb 14, 2021
+11
F
G
J
Abstract Successful extinction of traumatic memories depends on neuronal plasticity in the fear extinction network. However, the mechanisms involved in the extinction process remain poorly understood. Here, we investigated the fear extinction network by using a new optogenetic technique that allows temporal and spatial control of neuronal plasticity in vivo . We optimized an optically inducible TrkB (CKII-optoTrkB), the receptor of the brain-derived neurotrophic factor, which can be activated upon blue light exposure to increase plasticity specifically in pyramidal neurons. The activation of CKII-optoTrkB facilitated the induction of LTP in Schaffer collateral-CA1 synapses after brief theta-burst stimulation and increased the expression of FosB in the pyramidal neurons of the ventral hippocampus, indicating enhanced plasticity in that brain area. We showed that optical stimulation of the CA1 region of the ventral hippocampus during fear extinction training led to an attenuated conditioned fear memory. This was a specific effect only observed when combining extinction training with CKII-optoTrkB activation, and not when using either intervention alone. Thus, TrkB activation in ventral CA1 pyramidal neurons promotes a state of neuronal plasticity that allows extinction training to guide neuronal network remodeling to overcome fear memories. Our methodology is a powerful tool to induce neuronal network remodeling in the adult brain, and can attenuate neuropsychiatric symptoms caused by malfunctioning networks.
18
Citation5
0
Save
0

Antidepressant drugs act by directly binding to TRKB neurotrophin receptors

Plínio Casarotto et al.Sep 9, 2019
+26
C
P
P
Abstract It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of TRKB, the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral and plasticity-promoting responses to antidepressants in vitro and in vivo . We suggest that binding to TRKB and the allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which proposes a framework for how molecular effects of antidepressants are translated into clinical mood recovery.
0
Citation4
0
Save
21

Chondroitinase and antidepressants promote plasticity by releasing TRKB from dephosphorylating control of PTPσ in parvalbumin neurons

Angelina Lesnikova et al.Aug 13, 2020
+7
S
P
A
Abstract Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulphate proteoglycans (CSPGs) which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates BDNF-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex. Significance statement Critical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV + ) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV + neurons. Protein tyrosine phosphatase type S (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV + interneurons.
21
Citation2
0
Save
6

Activation of TrkB in Parvalbumin interneurons is required for the promotion of reversal learning in spatial and fear memory by antidepressants

Elias Jetsonen et al.Sep 8, 2022
+9
F
G
E
Summary Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin positive (PV + ) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV + interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV + interneurons (PV-TrkB hCKO) in Intellicage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV + interneurons. In addition, hippocampal long-term potentiation (LTP) was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV + interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net (PNN) formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNN s in PV + interneurons, and here we show that TrkB expression in PV + interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.