CS
Cezary Smaczniak
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,568
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
17

Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development

Cezary Smaczniak et al.Jan 11, 2012
+12
R
L
C
Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the “floral quartet” model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.
17
0

Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis Flower

Kerstin Kaufmann et al.Apr 16, 2009
+4
C
R
K
The molecular mechanisms by which floral homeotic genes act as major developmental switches to specify the identity of floral organs are still largely unknown. Floral homeotic genes encode transcription factors of the MADS-box family, which are supposed to assemble in a combinatorial fashion into organ-specific multimeric protein complexes. Major mediators of protein interactions are MADS-domain proteins of the SEPALLATA subfamily, which play a crucial role in the development of all types of floral organs. In order to characterize the roles of the SEPALLATA3 transcription factor complexes at the molecular level, we analyzed genome-wide the direct targets of SEPALLATA3. We used chromatin immunoprecipitation followed by ultrahigh-throughput sequencing or hybridization to whole-genome tiling arrays to obtain genome-wide DNA-binding patterns of SEPALLATA3. The results demonstrate that SEPALLATA3 binds to thousands of sites in the genome. Most potential target sites that were strongly bound in wild-type inflorescences are also bound in the floral homeotic agamous mutant, which displays only the perianth organs, sepals, and petals. Characterization of the target genes shows that SEPALLATA3 integrates and modulates different growth-related and hormonal pathways in a combinatorial fashion with other MADS-box proteins and possibly with non-MADS transcription factors. In particular, the results suggest multiple links between SEPALLATA3 and auxin signaling pathways. Our gene expression analyses link the genomic binding site data with the phenotype of plants expressing a dominant repressor version of SEPALLATA3, suggesting that it modulates auxin response to facilitate floral organ outgrowth and morphogenesis. Furthermore, the binding of the SEPALLATA3 protein to cis-regulatory elements of other MADS-box genes and expression analyses reveal that this protein is a key component in the regulatory transcriptional network underlying the formation of floral organs.
0
Citation433
0
Save
0

Naturally occurring allele diversity allows potato cultivation in northern latitudes

Bjorn Kloosterman et al.Mar 1, 2013
+9
M
J
B
0
Citation348
0
Save
0

Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency

Ana Assunção et al.May 17, 2010
+8
Y
E
A
Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper ( bZIP ) transcription factor gene family, bZIP19 and bZIP23 , that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.
0
Citation333
0
Save
12

Single-nuclei RNA-sequencing of plant tissues

Daniele Sunaga-Franze et al.Nov 16, 2020
+10
J
D
D
SUMMARY Single-cell genomics provides unprecedented potential for research on plant development and environmental responses. Here, we introduce a generic procedure for plant nuclei isolation combined with nanowell-based library preparation. Our method enables the transcriptome analysis of thousands of individual plant nuclei. It serves as alternative to the use of protoplast isolation, which is currently a standard methodology for plant single-cell genomics, although it can be challenging for some plant tissues. We show the applicability of our nuclei isolation method by using different plant materials from several species. The potential of our snRNA-seq method is shown through the characterization of transcriptomes of seedlings and developing flowers from Arabidopsis thaliana . We evaluated the transcriptome dynamics during the early stages of anther development, identify stage-specific transcription factors regulating this process and the prediction of their target genes. Our nuclei isolation procedure can be applied in different plant species and tissues, thus expanding the toolkit for plant single-cell genomics experiments. SIGNIFICANCE STATEMENT We introduce an optimized plant nuclei isolation procedure followed by single nuclei RNA-seq that can be applied to different plant tissues without the need for protoplast isolation.
12
Citation9
0
Save
53

A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data

Manuel Neumann et al.Jul 1, 2021
+8
C
X
M
ABSTRACT Identity and functions of plant cells are influenced by their precise cellular location within the plant body. Cellular heterogeneity in growth and differentiation trajectories results in organ patterning. Therefore, assessing this heterogeneity at molecular scale is a major question in developmental biology. Single-cell transcriptomics (scRNA-seq) allows to characterize and quantify gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during the scRNA-seq procedure. To recover the original location of cells is essential to link gene activity with cellular function and morphology. Here, we reconstruct genome-wide gene expression patterns of individual cells in a floral meristem by combining single-nuclei RNA-seq with 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the data are used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com
53
Citation3
0
Save
1

The Intervening Domain Is Required For DNA-binding and Functional Identity of Plant MADS Transcription Factors

Xuelei Lai et al.Mar 10, 2021
+12
V
R
X
Abstract The MADS transcription factors (TF) are an ancient protein family with a high degree of sequence identity that bind almost identical DNA sequences across all eukaryotic kingdoms of life, yet fulfill dramatically different physiological roles. In plants, the family is divided into two main lineages, type I and II, based on sequence conservation of the DNA-binding MADS-box domain (M domain) with yeast and animal M domains. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the M domain called the Intervening domain (I domain) in type II MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a highly conserved MADS-box fold with the I domain forming an alpha helix and acting to stabilize the M domain. Based on secondary structure prediction, sequences fulfilling the same function as the SEP3 I domain can be found in both lineages of plant MADS TFs, suggesting the I domain is a conserved and required part of the DNA-binding domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters DNA-binding specificity based on seq-DAP-seq experiments. Yeast 2-hybrid experiments further revealed the role of the I domain in dimerization specificity. Surprisingly, introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant, resulted in a high degree of complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts both as an integral part of the DNA-binding domain and strongly contributes to the functional identity of the MADS TF.
1
Citation1
0
Save
0

PWWP INTERACTOR OF POLYCOMBS (PWO1) links PcG-mediated gene repression to the nuclear lamina in Arabidopsis.

Paweł Mikulski et al.Nov 16, 2017
+4
S
C
P
Polycomb group (PcG) proteins facilitate chromatin-mediated gene repression through the modification of histone tails in a wide range of eukaryotes, including plants and animals. One of the PcG protein complexes, Polycomb Repressive Complex 2 (PRC2), promotes repressive chromatin formation via tri-methylation of lysine-27 on histone H3 (H3K27me3). The animal PRC2 is implicated in impacting subnuclear distribution of chromatin as its complex components and H3K27me3 are functionally connected with the nuclear lamina (NL) - a peripheral protein mesh that resides underneath the inner nuclear membrane (INM) and consists of lamins and lamina-associated proteins. In contrast to animals, NL in plants has an atypical structure and its association with PRC2-mediated gene repression is largely unknown. Here, we present a connection between lamin-like protein, CROWDED NUCLEI 1 (CRWN1), and a novel PRC2-associated component, PWWP INTERACTOR OF POLYCOMBS 1 (PWO1), in Arabidopsis thaliana. We show that PWO1 and CRWN1 proteins associate physically with each other, act in the same pathway to maintain nuclear morphology and control expression of similar set of target genes. Moreover, we demonstrate that PWO1 proteins form speckle-like foci located partially at the subnuclear periphery in Nicotiana benthamiana and Arabidopsis thaliana. Ultimately, as CRWN1 and PWO1 are plant-specific, our results argue that plants developed an equivalent, rather than homologous, mechanism of linking PRC2-mediated chromatin repression and nuclear lamina.