YX
Yineng Xu
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
7
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Fitness effects of CRISPR endonucleases inDrosophila melanogasterpopulations

Anna Langmüller et al.May 14, 2021
+6
S
J
A
Abstract CRISPR/Cas9 systems provide a highly efficient and flexible genome editing technology with numerous potential applications in areas ranging from gene therapy to population control. Some proposed applications involve CRISPR/Cas9 endonucleases integrated into an organism’s genome, which raises questions about potentially harmful effects to the transgenic individuals. One application where this is particularly relevant are CRISPR-based gene drives, which promise a mechanism for rapid genetic alteration of entire populations. The performance of such drives can strongly depend on fitness costs experienced by drive carriers, yet relatively little is known about the magnitude and causes of these costs. Here, we assess the fitness effects of genomic CRISPR/Cas9 expression in Drosophila melanogaster cage populations by tracking allele frequencies of four different transgenic constructs, designed to disentangle direct fitness costs due to the integration, expression, and target-site activity of Cas9 from costs due to potential off-target cleavage. Using a maximum likelihood framework, we find a moderate level of fitness costs due to off-target effects but do not detect significant direct costs. Costs of off-target effects are minimized for a construct with Cas9HF1, a high-fidelity version of Cas9. We further demonstrate that using Cas9HF1 instead of standard Cas9 in a homing drive achieves similar drive conversion efficiency. Our results suggest that gene drives should be designed with high-fidelity endonucleases and may have implications for other applications that involve genomic integration of CRISPR endonucleases.
1
Citation7
0
Save
0

Low FoxO expression in Drosophila somatosensory neurons protects dendrite growth under nutrient restriction

Amy Poe et al.Aug 15, 2019
+3
C
Y
A
During prolonged nutrient restriction, developing animals redistribute vital nutrients to favor brain growth at the expense of other organs. In Drosophila, such brain sparing relies on a glia-derived growth factor to sustain proliferation of neural stem cells. However, whether other aspects of neural development are also spared under nutrient restriction is unknown. Here we show that dynamically growing somatosensory neurons in the Drosophila peripheral nervous system exhibit organ sparing at the level of arbor growth: Under nutrient stress, sensory dendrites preferentially grow as compared to neighboring non-neural tissues, resulting in dendrite overgrowth. Underlying this neuronal nutrient-insensitivity is the lower expression of the stress sensor FoxO in neurons. Consequently, nutrient restriction suppresses Tor signaling less and does not induce autophagy in neurons. Preferential dendrite growth is functional desirable because it results in heightened animal responses to sensory stimuli, indicative of a potential survival advantage under environmental challenges.
23

Upgraded CRISPR/Cas9 Tools for Tissue-Specific Mutagenesis inDrosophila

Gabriel Koreman et al.Jul 3, 2020
+5
Y
Q
G
ABSTRACT CRISPR/Cas9 has emerged as a powerful technology for tissue-specific mutagenesis. However, tissue-specific CRISPR/Cas9 tools currently available in Drosophila remain deficient in three significant ways. First, many existing gRNAs are inefficient, such that further improvements of gRNA expression constructs are needed for more efficient and predictable mutagenesis in both somatic and germline tissues. Second, it has been difficult to label mutant cells in target tissues with current methods. Lastly, application of tissue-specific mutagenesis at present often relies on Gal4-driven Cas9, which hampers the flexibility and effectiveness of the system. Here we tackle these deficiencies by building upon our previous CRISPR-mediated tissue restricted mutagenesis (CRISPR-TRiM) tools. First, we significantly improved gRNA efficiency in somatic tissues by optimizing multiplexed gRNA design. Similarly, we also designed efficient dual-gRNA vectors for the germline. Second, we developed methods to positively and negatively label mutant cells in tissue-specific mutagenesis by incorporating co-CRISPR reporters into gRNA expression vectors. Lastly, we generated genetic reagents for convenient conversion of existing Gal4 drivers into tissue-specific Cas9 lines based on homology-assisted CRISPR knock-in (HACK). In this way, we expand the choices of Cas9 for CRISPR-TRiM analysis to broader tissues and developmental stages. Overall, our upgraded CRISPR/Cas9 tools make tissue-specific mutagenesis more versatile, reliable, and effective in Drosophila . These improvements may be also applied to other model systems.
8

Light-induced trapping of endogenous proteins reveals spatiotemporal roles of microtubule and kinesin-1 in dendrite patterning of Drosophila sensory neurons

Yineng Xu et al.Jan 1, 2023
+3
H
B
Y
Animal development involves numerous molecular events, whose spatiotemporal properties largely determine the biological outcomes. Conventional methods for studying gene function lack the necessary spatiotemporal resolution for precise dissection of developmental mechanisms. Optogenetic approaches are powerful alternatives, but most existing tools rely on exogenous designer proteins that produce narrow outputs and cannot be applied to diverse or endogenous proteins. To address this limitation, we developed OptoTrap, a light-inducible protein trapping system that allows manipulation of endogenous proteins tagged with GFP or split GFP. This system turns on fast and is reversible in minutes or hours. We generated OptoTrap variants optimized for neurons and epithelial cells and demonstrate effective trapping of endogenous proteins of diverse sizes, subcellular locations, and functions. Furthermore, OptoTrap allowed us to instantly disrupt microtubules and inhibit the kinesin-1 motor in specific dendritic branches of Drosophila sensory neurons. Using OptoTrap, we obtained direct evidence that microtubules support the growth of highly dynamic dendrites. Similarly, targeted manipulation of Kinesin heavy chain revealed differential spatiotemporal requirements of kinesin-1 in the patterning of low- and high-order dendritic branches, suggesting that different cargos are needed for the growth of these branches. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds great promise for studying developmental mechanisms in a wide range of cell types and developmental stages.