PL
Pat Levitt
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(84% Open Access)
Cited by:
7,571
h-index:
90
/
i10-index:
265
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptional landscape of the prenatal human brain

Jeremy Miller et al.Apr 1, 2014
+77
A
S
J
The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. A spatially resolved transcriptional atlas of the mid-gestational developing human brain has been created using laser-capture microdissection and microarray technology, providing a comprehensive reference resource which also enables new hypotheses about the nature of human brain evolution and the origins of neurodevelopmental disorders. With President Barack Obama's BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative now entering year two, this issue of Nature presents two landmark papers that mobilize 'big science' resources to the cause. Hongkui Zeng and colleagues present the first brain-wide, mesoscale connectome for a mammalian species — the laboratory mouse — based on cell-type-specific tracing of axonal projections. The wiring diagram of a complete nervous system has long been available for a small roundworm, but neuronal connectivity data for larger animals has been patchy until now. The new three-dimensional Allen Mouse Brain Connectivity Atlas is a whole-brain connectivity matrix that will provide insights into how brain regions communicate. Much of the data generated in this project will be of relevance to investigations of neural networks in humans and should help to further our understanding of human brain connectivity and its involvement in brain disorders. In a separate report Ed Lein and colleagues present a transcriptional atlas of the mid-gestational human brain at high spatial resolution, based on laser microdissection and DNA microarray technology. The structure and function of the human brain is largely determined by prenatal transcriptional processes that initiate gene expression, but our understanding of the developing brain has been limited. The new data set reveals transcriptional signatures for developmental processes associated with the massive expansion of neocortex during human evolution, and suggests new cortical germinal zones or postmitotic neurons as sites of dynamic expression for many genes associated with neurological or psychiatric disorders.
0

Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex

Károly Mirnics et al.Oct 1, 2000
+2
A
F
K
Microarray expression profiling of prefrontal cortex from matched pairs of schizophrenic and control subjects and hierarchical data analysis revealed that transcripts encoding proteins involved in the regulation of presynaptic function (PSYN) were decreased in all subjects with schizophrenia. Genes of the PSYN group showed a different combination of decreased expression across subjects. Over 250 other gene groups did not show altered expression. Selected PSYN microarray observations were verified by in situ hybridization. Two of the most consistently changed transcripts in the PSYN functional gene group, N-ethylmaleimide sensitive factor and synapsin II, were decreased in ten of ten and nine of ten subjects with schizophrenia, respectively. The combined data suggest that subjects with schizophrenia share a common abnormality in presynaptic function. We set forth a predictive, testable model.
0
Citation881
0
Save
0

Evaluation, Diagnosis, and Treatment of Gastrointestinal Disorders in Individuals With ASDs: A Consensus Report

Timothy Buie et al.Jan 1, 2010
+24
G
J
T
Autism spectrum disorders (ASDs) are common and clinically heterogeneous neurodevelopmental disorders. Gastrointestinal disorders and associated symptoms are commonly reported in individuals with ASDs, but key issues such as the prevalence and best treatment of these conditions are incompletely understood. A central difficulty in recognizing and characterizing gastrointestinal dysfunction with ASDs is the communication difficulties experienced by many affected individuals. A multidisciplinary panel reviewed the medical literature with the aim of generating evidence-based recommendations for diagnostic evaluation and management of gastrointestinal problems in this patient population. The panel concluded that evidence-based recommendations are not yet available. The consensus expert opinion of the panel was that individuals with ASDs deserve the same thoroughness and standard of care in the diagnostic workup and treatment of gastrointestinal concerns as should occur for patients without ASDs. Care providers should be aware that problem behavior in patients with ASDs may be the primary or sole symptom of the underlying medical condition, including some gastrointestinal disorders. For these patients, integration of behavioral and medical care may be most beneficial. Priorities for future research are identified to advance our understanding and management of gastrointestinal disorders in persons with ASDs.
0
Paper
Citation774
0
Save
0

Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain

Pat Levitt et al.Oct 1, 1980
P
P
Abstract Peroxidase‐antiperoxidase (PAP) immunohistochemical staining, utilizing a specific antibody to the glial fibrillary acidic protein (GFA), was employed to analyze gliogenesis in the central nervous system of rhesus monkeys ranging in age from embryonic day 38(E38) to birth (E165) and through the second postnatal month. All major subdivisions of the brain contain glial cells, recognized by the presence of dark brown horseradish peroxidase (HRP) reaction product. Neuronal elements are not stained with this immunocytochemical technique. The first class of glial cell to appear during development are the radial glial cells; the radial glial fibers fan out from the ventricular and subventricular zones, where their cell bodies reside, to the pial surface where they terminate with conical endfeet. These glial cells appear within the first third of gestation, being present in the spinal cord and brainstem by E41; in the diencephalon by E45; and in the telencephalon and cerebellum by E47. The next class of glia to appear is the Bergmann glial cell of the cerebellar cortex, which can be stained by E54. Bergmann glial cells located below the Purkinje cell layer issue parallel processes which extend up to the pial surface. Within each major subdivision of the brain, massive numbers of elongated glial fibers continually alter their distinctive patterns to maintain constant ventricular‐pial surface relationships during the major tectogenetic changes which occur throughout embryonic development. In Nissl‐counterstained sections columns of migrating neurons are observed juxtaposed to GFA‐positive radial and Bergmann glial fibers. Radial glial cells assume a variety of transitional forms during the process of their transformation into mature astrocytes. This transformation occurs in each structure at specific embryonic ages and is initiated after neuronal migration has begun to subside. The number of astroglial cells increases at an accelerated pace after neurogenesis is complete. The immunohistochemical localization of radial glial fibers at relatively early stages of embryonic development indicates that glial cells are present concomitantly with neurons, raising the possibility that at least two distinct populations of cell precursors compose the proliferative zones. Furthermore, the demonstration of large numbers of radial glial cells in all brain regions during the peak of neuronal migration and a close structural relationship between elongated glial fibers and migrating neurons support the concept that glia play a significant role in the guidance and compartmentalization of neuronal elements during development.
0
Citation700
0
Save
0

Integrative functional genomic analysis of human brain development and neuropsychiatric risks

Mingfeng Li et al.Dec 14, 2018
+97
Y
G
M
INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C , SATB2 , and TCF4 , with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease. Spatiotemporal dynamics of human brain development and neuropsychiatric risks. Human brain development begins during embryonic development and continues through adulthood (top). Integrating data modalities (bottom left) revealed age- and cell type–specific properties and global patterns of transcriptional dynamics, including a late fetal transition (bottom middle). We related the variation in gene expression (brown, high; purple, low) to regulatory elements in the fetal and adult brains, cell type–specific signatures, and genetic loci associated with neuropsychiatric disorders (bottom right; gray circles indicate enrichment for corresponding features among module genes). Relationships depicted in this panel do not correspond to specific observations. CBC, cerebellar cortex; STR, striatum; HIP, hippocampus; MD, mediodorsal nucleus of thalamus; AMY, amygdala.
0
Citation656
0
Save
0

A transient placental source of serotonin for the fetal forebrain

Alexandre Bonnin et al.Apr 19, 2011
+6
K
N
A
Although it is widely assumed that a maternal contribution to fetal serotonin (5-hydroxytryptamine or 5-HT) levels during pregnancy is important in neurodevelopment, there is little direct experimental evidence to support the idea. Bonnin et al. use new techniques to determine that during early pregnancy the placenta is a significant source of 5-HT, made from maternal tryptophan precursors in both mice and humans. Later in pregnancy, an endogenous 5-HT source in the fetus takes over. Serotonin (5-hydroxytryptamine or 5-HT) is thought to regulate neurodevelopmental processes through maternal–fetal interactions that have long-term mental health implications. It is thought that beyond fetal 5-HT neurons there are significant maternal contributions to fetal 5-HT during pregnancy1,2 but this has not been tested empirically. To examine putative central and peripheral sources of embryonic brain 5-HT, we used Pet1−/− (also called Fev) mice in which most dorsal raphe neurons lack 5-HT3. We detected previously unknown differences in accumulation of 5-HT between the forebrain and hindbrain during early and late fetal stages, through an exogenous source of 5-HT which is not of maternal origin. Using additional genetic strategies, a new technology for studying placental biology ex vivo and direct manipulation of placental neosynthesis, we investigated the nature of this exogenous source. We uncovered a placental 5-HT synthetic pathway from a maternal tryptophan precursor in both mice and humans. This study reveals a new, direct role for placental metabolic pathways in modulating fetal brain development and indicates that maternal–placental–fetal interactions could underlie the pronounced impact of 5-HT on long-lasting mental health outcomes.
0
Citation522
0
Save
0

Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons.

Pat Levitt et al.Oct 1, 1982
X
J
P
An antiserum to monoamine oxidase B (MAO-B) was used to define the distribution of this metabolic enzyme in the adult rat brain immunocytochemically. MAO-B is specifically located in two major central nervous system cell classes, astrocytes and serotonin-containing neurons. Double-immunofluorescence experiments using antisera to glial fibrillary acidic protein and MAO-B showed that both protoplasmic and fibrillary astrocytes throughout the brain contain MAO-B, whereas oligodendrocytes do not contain the enzyme. Areas lacking a blood-brain barrier, such as the specialized circumventricular organs, also contain MAO-B-positive cells. A double-immunofluorescence experiment using antisera to serotonin and MAO-B enabled the positive identification of neurons containing both molecules. The catecholamine-containing neurons of the brain did not contain detectable amounts of MAO-B. The specific distribution of MAO-B in the adult central nervous system indicates that the role of MAO-B in monoamine metabolism may be more specifically defined than previously believed.
0

Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia

Károly Mirnics et al.Apr 27, 2001
+2
G
F
K
Complex defects in neuronal signaling may underlie the dysfunctions that characterize schizophrenia. Using cDNA microarrays, we discovered that the transcript encoding regulator of G-protein signaling 4 (RGS4) was the most consistently and significantly decreased in the prefrontal cortex of all schizophrenic subjects examined. The expression levels of ten other RGS family members represented on the microarrays were unchanged and hierarchical data analysis revealed that as a group, 274 genes associated with G-protein signaling were unchanged. Quantitative in situ hybridization verified the microarray RGS4 data, and demonstrated highly correlated decreases in RGS4 expression across three cortical areas of ten subjects with schizophrenia. RGS4 expression was not altered in the prefrontal cortex of subjects with major depressive disorder or in monkeys treated chronically with haloperidol. Interestingly, targets for 70 genes mapped to the major schizophrenia susceptibility locus 1q21–22 were present on the microarrays, of which only RGS4 gene expression was consistently altered. The combined data indicate that a decrease in RGS4 expression may be a common and specific feature of schizophrenia, which could be due either to genetic factors or a disease- specific adaptation, both of which could affect neuronal signaling.
0
Citation436
0
Save
0

Gene Expression Profiling Reveals Alterations of Specific Metabolic Pathways in Schizophrenia

Frank Middleton et al.Apr 1, 2002
+2
J
K
F
Dysfunction of the dorsal prefrontal cortex (PFC) in schizophrenia may be associated with alterations in the regulation of brain metabolism. To determine whether abnormal expression of genes encoding proteins involved in cellular metabolism contributes to this dysfunction, we used cDNA microarrays to perform gene expression profiling of all major metabolic pathways in postmortem samples of PFC area 9 from 10 subjects with schizophrenia and 10 matched control subjects. Genes comprising 71 metabolic pathways were assessed in each pair, and only five pathways showed consistent changes (decreases) in subjects with schizophrenia. Reductions in expression were identified for genes involved in the regulation of ornithine and polyamine metabolism, the mitochondrial malate shuttle system, the transcarboxylic acid cycle, aspartate and alanine metabolism, and ubiquitin metabolism. Interestingly, although most of the metabolic genes that were consistently decreased across subjects with schizophrenia were not similarly decreased in haloperidol-treated monkeys, the transcript encoding the cytosolic form of malate dehydrogenase displayed prominent drug-associated increases in expression compared with untreated animals. These molecular analyses implicate a highly specific pattern of metabolic alterations in the PFC of subjects with schizophrenia and raise the possibility that antipsychotic medications may exert a therapeutic effect, in part, by normalizing some of these changes.
0
Citation426
0
Save
0

Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis

Pat Levitt et al.Jan 1, 1981
P
M
P
The cytological composition of the proliferative zones in the fetal monkey occipital lobe was examined at the light and electron microscopic levels by immunoperoxidase localization of glial fibrillary acid protein (GFA), a protein that is present in astrocytes and radial glial cells but not neurons. During the peak of neurogenesis at embryonic day 80, two distinct classes of proliferative cells, GFA- positive and GFA-negative, are intermixed in the ventricular and subventricular zones. Both cell types are readily recognized in different phases of the mitotic cycle along the ventricular surface. The results indicate that, contrary to prevailing views, (1) glial and neuronal cell lines coexist within the fetal proliferative zones and (2) the onset of glial phenotypic expression occurs prior to the last cell division.
0
Citation397
0
Save
Load More