SM
Susan Murphy
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(66% Open Access)
Cited by:
4,671
h-index:
67
/
i10-index:
201
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy

Bonnie Joubert et al.Jul 25, 2012
Background: Epigenetic modifications, such as DNA methylation, due to in utero exposures may play a critical role in early programming for childhood and adult illness. Maternal smoking is a major risk factor for multiple adverse health outcomes in children, but the underlying mechanisms are unclear.Objective: We investigated epigenome-wide methylation in cord blood of newborns in relation to maternal smoking during pregnancy.Methods: We examined maternal plasma cotinine (an objective biomarker of smoking) measured during pregnancy in relation to DNA methylation at 473,844 CpG sites (CpGs) in 1,062 newborn cord blood samples from the Norwegian Mother and Child Cohort Study (MoBa) using the Infinium HumanMethylation450 BeadChip (450K).Results: We found differential DNA methylation at epigenome-wide statistical significance (p-value < 1.06 × 10–7) for 26 CpGs mapped to 10 genes. We replicated findings for CpGs in AHRR, CYP1A1, and GFI1 at strict Bonferroni-corrected statistical significance in a U.S. birth cohort. AHRR and CYP1A1 play a key role in the aryl hydrocarbon receptor signaling pathway, which mediates the detoxification of the components of tobacco smoke. GFI1 is involved in diverse developmental processes but has not previously been implicated in responses to tobacco smoke.Conclusions: We identified a set of genes with methylation changes present at birth in children whose mothers smoked during pregnancy. This is the first study of differential methylation across the genome in relation to maternal smoking during pregnancy using the 450K platform. Our findings implicate epigenetic mechanisms in the pathogenesis of the adverse health outcomes associated with this important in utero exposure.
0
Citation685
0
Save
0

Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

Simon Gregory et al.Oct 22, 2009
Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders. We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR). Our analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls. Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of OXTR in the development of the disorder. See the related commentary by Gurrieri and Neri: http://www.biomedcentral.com/1741-7015/7/63
0
Citation554
0
Save
0

Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-κB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer

Peng Jin et al.Nov 17, 2015
Emerging evidence has highlighted the host immune system in modulating the patient response to chemotherapy, but the mechanism of this modulation remains unclear. The aim of this study was to analyze the effect of chemotherapy on antitumor immunity in the tumor microenvironment of ovarian cancer. Treatment of ovarian cancer cell lines with various chemotherapeutic agents resulted in upregulated expression of MHC class I and programmed cell death 1 ligand 1 (PD-L1) in a NF-κB-dependent manner and suppression of antigen-specific T-cell function in vitro. In a mouse model of ovarian cancer, treatment with paclitaxel increased CD8(+) T-cell infiltration into the tumor site, upregulated PD-L1 expression, and activated NF-κB signaling. In particular, tumor-bearing mice treated with a combination of paclitaxel and a PD-L1/PD-1 signal blockade survived longer than mice treated with paclitaxel alone. In summary, we found that chemotherapy induces local immune suppression in ovarian cancer through NF-κB-mediated PD-L1 upregulation. Thus, a combination of chemotherapy and immunotherapy targeting the PD-L1/PD-1 signaling axis may improve the antitumor response and offers a promising new treatment modality against ovarian cancer.
0

Relationship Between Methylome and Transcriptome in Patients With Nonalcoholic Fatty Liver Disease

Susan Murphy et al.Aug 1, 2013
Cirrhosis and liver cancer are potential outcomes of advanced nonalcoholic fatty liver disease (NAFLD). It is not clear what factors determine whether patients will develop advanced or mild NAFLD, limiting noninvasive diagnosis and treatment before clinical sequelae emerge. We investigated whether DNA methylation profiles can distinguish patients with mild disease from those with advanced NAFLD, and how these patterns are functionally related to hepatic gene expression.We collected frozen liver biopsies and clinical data from patients with biopsy-proven NAFLD (56 in the discovery cohort and 34 in the replication cohort). Samples were divided into groups based on histologic severity of fibrosis: F0-1 (mild) and F3-4 (advanced). DNA methylation profiles were determined and coupled with gene expression data from the same biopsies; differential methylation was validated in subsets of the discovery and replication cohorts. We then analyzed interactions between the methylome and transcriptome.Clinical features did not differ between patients known to have mild or advanced fibrosis based on biopsy analysis. There were 69,247 differentially methylated CpG sites (76% hypomethylated, 24% hypermethylated) in patients with advanced vs mild NAFLD (P < .05). Methylation at fibroblast growth factor receptor 2, methionine adenosyl methyltransferase 1A, and caspase 1 was validated by bisulfite pyrosequencing and the findings were reproduced in the replication cohort. Methylation correlated with gene transcript levels for 7% of differentially methylated CpG sites, indicating that differential methylation contributes to differences in expression. In samples with advanced NAFLD, many tissue repair genes were hypomethylated and overexpressed, and genes in certain metabolic pathways, including 1-carbon metabolism, were hypermethylated and underexpressed.Functionally relevant differences in methylation can distinguish patients with advanced vs mild NAFLD. Altered methylation of genes that regulate processes such as steatohepatitis, fibrosis, and carcinogenesis indicate the role of DNA methylation in progression of NAFLD.
0
Citation343
0
Save
0

Paternal obesity is associated with IGF2hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort

Adelheid Soubry et al.Feb 6, 2013
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring's DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) ≥30 kg/m2. Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (β-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome. While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring's future health status.
0
Citation314
0
Save
0

Anchorage-independent cell growth signature identifies tumors with metastatic potential

Seiichi Mori et al.Jun 1, 2009
The oncogenic phenotype is complex, resulting from the accumulation of multiple somatic mutations that lead to the deregulation of growth regulatory and cell fate controlling activities and pathways. The ability to dissect this complexity, so as to reveal discrete aspects of the biology underlying the oncogenic phenotype, is critical to understanding the various mechanisms of disease as well as to reveal opportunities for novel therapeutic strategies. Previous work has characterized the process of anchorage-independent growth of cancer cells in vitro as a key aspect of the tumor phenotype, particularly with respect to metastatic potential. Nevertheless, it remains a major challenge to translate these cell biology findings into the context of human tumors. We previously used DNA microarray assays to develop expression signatures, which have the capacity to identify subtle distinctions in biological states and can be used to connect in vitro and in vivo states. Here we describe the development of a signature of anchorage-independent growth, show that the signature exhibits characteristics of deregulated mitochondrial function and then demonstrate that the signature identifies human tumors with the potential for metastasis.
0
Citation311
0
Save
0

Newborns of obese parents have altered DNA methylation patterns at imprinted genes

Adelheid Soubry et al.Oct 25, 2013
Several epidemiologic studies have demonstrated associations between periconceptional environmental exposures and health status of the offspring in later life. Although these environmentally related effects have been attributed to epigenetic changes, such as DNA methylation shifts at imprinted genes, little is known about the potential effects of maternal and paternal preconceptional overnutrition or obesity.We examined parental preconceptional obesity in relation to DNA methylation profiles at multiple human imprinted genes important in normal growth and development, such as: maternally expressed gene 3 (MEG3), mesoderm-specific transcript (MEST), paternally expressed gene 3 (PEG3), pleiomorphic adenoma gene-like 1 (PLAGL1), epsilon sarcoglycan and paternally expressed gene 10 (SGCE/PEG10) and neuronatin (NNAT).We measured methylation percentages at the differentially methylated regions (DMRs) by bisulfite pyrosequencing in DNA extracted from umbilical cord blood leukocytes of 92 newborns. Preconceptional obesity, defined as BMI ⩾30 kg m(-2), was ascertained through standardized questionnaires.After adjusting for potential confounders and cluster effects, paternal obesity was significantly associated with lower methylation levels at the MEST (β=-2.57; s.e.=0.95; P=0.008), PEG3 (β=-1.71; s.e.=0.61; P=0.005) and NNAT (β=-3.59; s.e.=1.76; P=0.04) DMRs. Changes related to maternal obesity detected at other loci were as follows: β-coefficient was +2.58 (s.e.=1.00; P=0.01) at the PLAGL1 DMR and -3.42 (s.e.=1.69; P=0.04) at the MEG3 DMR.We found altered methylation outcomes at multiple imprint regulatory regions in children born to obese parents, compared with children born to non-obese parents. In spite of the small sample size, our data suggest a preconceptional influence of parental life-style or overnutrition on the (re)programming of imprint marks during gametogenesis and early development. More specifically, the significant and independent association between paternal obesity and the offspring's methylation status suggests the susceptibility of the developing sperm for environmental insults. The acquired imprint instability may be carried onto the next generation and increase the risk for chronic diseases in adulthood.
0
Citation295
0
Save
0

Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease

Cynthia Moylan et al.Aug 2, 2013
HepatologyVolume 59, Issue 2 p. 471-482 Steatohepatitis/Metabolic Liver DiseaseFree Access Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease Cynthia A. Moylan, Cynthia A. Moylan Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorHerbert Pang, Herbert Pang Department of Biostatistics and Bioinformatics, Duke University, Durham, NCSearch for more papers by this authorAndrew Dellinger, Andrew Dellinger Department of Biostatistics and Bioinformatics, Duke University, Durham, NCSearch for more papers by this authorAyako Suzuki, Ayako Suzuki Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorMelanie E. Garrett, Melanie E. Garrett Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorCynthia D. Guy, Cynthia D. Guy Department of Pathology, Duke University, Durham, NCSearch for more papers by this authorSusan K. Murphy, Susan K. Murphy Department of Obstetrics and Gynecology, Duke University, Durham, NCSearch for more papers by this authorAllison E. Ashley-Koch, Allison E. Ashley-Koch Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorSteve S. Choi, Steve S. Choi Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorGregory A. Michelotti, Gregory A. Michelotti Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorDaniel D. Hampton, Daniel D. Hampton Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorYuping Chen, Yuping Chen Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorHans L. Tillmann, Hans L. Tillmann Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorMichael A. Hauser, Michael A. Hauser Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorManal F. Abdelmalek, Manal F. Abdelmalek Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorAnna Mae Diehl, Corresponding Author Anna Mae Diehl Department of Medicine, Duke University, Durham, NCAddress reprint requests to: Anna Mae Diehl, M.D., Department of Gastroenterology, Duke University, Synderman Building (GSRB-1), 595 LaSalle Street, Suite 1073, Durham, NC 27710. E-mail: [email protected]; fax: 919-684-4183.Search for more papers by this author Cynthia A. Moylan, Cynthia A. Moylan Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorHerbert Pang, Herbert Pang Department of Biostatistics and Bioinformatics, Duke University, Durham, NCSearch for more papers by this authorAndrew Dellinger, Andrew Dellinger Department of Biostatistics and Bioinformatics, Duke University, Durham, NCSearch for more papers by this authorAyako Suzuki, Ayako Suzuki Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorMelanie E. Garrett, Melanie E. Garrett Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorCynthia D. Guy, Cynthia D. Guy Department of Pathology, Duke University, Durham, NCSearch for more papers by this authorSusan K. Murphy, Susan K. Murphy Department of Obstetrics and Gynecology, Duke University, Durham, NCSearch for more papers by this authorAllison E. Ashley-Koch, Allison E. Ashley-Koch Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorSteve S. Choi, Steve S. Choi Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorGregory A. Michelotti, Gregory A. Michelotti Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorDaniel D. Hampton, Daniel D. Hampton Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorYuping Chen, Yuping Chen Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorHans L. Tillmann, Hans L. Tillmann Department of Medicine, Duke University, Durham, NC Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NCSearch for more papers by this authorMichael A. Hauser, Michael A. Hauser Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorManal F. Abdelmalek, Manal F. Abdelmalek Department of Medicine, Duke University, Durham, NCSearch for more papers by this authorAnna Mae Diehl, Corresponding Author Anna Mae Diehl Department of Medicine, Duke University, Durham, NCAddress reprint requests to: Anna Mae Diehl, M.D., Department of Gastroenterology, Duke University, Synderman Building (GSRB-1), 595 LaSalle Street, Suite 1073, Durham, NC 27710. E-mail: [email protected]; fax: 919-684-4183.Search for more papers by this author First published: 02 August 2013 https://doi.org/10.1002/hep.26661Citations: 208 Potential conflict of interest: Dr. Tillmann owns stock in AbbVie, Abbott, and Gilead. The majority of this work was supported through an American Recovery and Reinvestment Act (ARRA) grant from the National Institute on Alcohol Abuse and Alcoholism (5RC2 AA019399; A.M.D., principal investigator). Drs. Diehl and Abdelmalek received funding support from the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NIDDK; grant no.: U01-DK57149). Dr. Abdelmalek was supported by a NIH/NIDDK K23 Career Development Award (K23-DK062116). AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Clinicians rely upon the severity of liver fibrosis to segregate patients with well-compensated nonalcoholic fatty liver disease (NAFLD) into subpopulations at high- versus low-risk for eventual liver-related morbidity and mortality. We compared hepatic gene expression profiles in high- and low-risk NAFLD patients to identify processes that distinguish the two groups and hence might be novel biomarkers or treatment targets. Microarray analysis was used to characterize gene expression in percutaneous liver biopsies from low-risk, “mild” NAFLD patients (fibrosis stage 0-1; n = 40) and high-risk, “severe” NAFLD patients (fibrosis stage 3-4; n = 32). Findings were validated in a second, independent cohort and confirmed by real-time polymerase chain reaction and immunohistochemistry (IHC). As a group, patients at risk for bad NAFLD outcomes had significantly worse liver injury and more advanced fibrosis (severe NAFLD) than clinically indistinguishable NAFLD patients with a good prognosis (mild NAFLD). A 64-gene profile reproducibly differentiated severe NAFLD from mild NAFLD, and a 20-gene subset within this profile correlated with NAFLD severity, independent of other factors known to influence NAFLD progression. Multiple genes involved with tissue repair/regeneration and certain metabolism-related genes were induced in severe NAFLD. Ingenuity Pathway Analysis and IHC confirmed deregulation of metabolic and regenerative pathways in severe NAFLD and revealed overlap among the gene expression patterns of severe NAFLD, cardiovascular disease, and cancer. Conclusion: By demonstrating specific metabolic and repair pathways that are differentially activated in livers with severe NAFLD, gene profiling identified novel targets that can be exploited to improve diagnosis and treatment of patients who are at greatest risk for NAFLD-related morbidity and mortality. (Hepatology 2014;59:471–482) Abbreviations α-SMA alpha smooth muscle actin APRI AST platelet ratio index AST aspartate aminotransferase BMI body mass index CVD cardiovascular disease DM diabetes mellitus DR ductular reaction ECM extracellular matrix GLI2 glioblastoma 2 GO Gene Ontology HbA1c hemoglobin A1c HH Hedgehog HCC hepatocellular carcinoma IHC immunohistochemical IPA Ingenuity Pathways Analysis K7 keratin 7 MetS metabolic syndrome MF HSCs myofibroblastic-stellate cells NAFLD nonalcoholic fatty liver disease NAS NAFLD Activity Score NASH nonalcoholic steatohepatitis PDGF platelet-derived growth factor qRT-PCR quantitative reverse-transcription polymerase chain reaction SHH Sonic Hedgehog SOX9 sex-determining region Y-box 9 SVM Support Vector Machines Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver disease in the world. Most patients with NAFLD do not develop clinically significant liver disease, but cirrhosis and/or liver cancer emerge in a subset.1 The molecular mechanisms underlying the heterogeneous outcomes of NAFLD remain unclear, and this knowledge gap has made it challenging to diagnose and treat NAFLD patients before symptomatic cirrhosis or liver cancer ensue. Liver biopsy studies have provided some help by demonstrating that bad liver outcomes are much more likely in fatty livers with coincident hepatocyte injury and liver inflammation (i.e., nonalcoholic steatohepatitis; NASH) than in livers with simple steatosis.2, 3 However, NASH encompasses a spectrum of liver injury and inflammation,4 and not all individuals with NASH ultimately develop cirrhosis or liver cancer.5 Also, although severity of NASH generally correlates with severity of fibrosis, some individuals with advanced fibrosis have relatively little NASH at the time liver tissue is sampled.6 Moreover, when advanced fibrosis is present, absence of NASH is no longer prognostic. Therefore, whereas a diagnosis of NASH provides some evidence for a worse prognosis than non-NASH NAFLD, it is of relatively limited help in predicting the ultimate outcome of NAFLD in an individual patient.3, 5 On the other hand, the stage of fibrosis on liver biopsy independently associates with liver-related mortality and generally correlates with the severity of portal hypertension.7 The latter is an excellent predictor of eventual liver-related morbidity, liver cancer, and death.8, 9 Hence, clinicians typically rely upon fibrosis staging to approximate risk for NAFLD-related morbidity and mortality. The need for early, accurate risk stratification, as well as effective risk-appropriate therapies, is particularly pressing in NAFLD because the disease has become epidemic, imposing a potential public health burden.10 Tissue gene expression profiling has been valuable for developing diagnostic and predictive biomarkers, as well as for targeting therapy, in cancer and other diseases in which tissue biopsies provide the basis for estimating prognosis and guiding treatment recommendations.11-13 Therefore, the aim of this study was to use microarray analysis to characterize a liver gene expression profile that reliably differentiated clinically similar, relatively asymptomatic individuals who were at opposite extremes of the risk spectrum for bad NAFLD-related liver outcomes based on their histologic stage of liver fibrosis. This profile was validated in a second, independent cohort and confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. After adjusting for the effect of known clinical correlates of liver fibrosis, a subset of the differentially expressed genes that independently correlated with NAFLD severity emerged. Pathway analysis and immunohistochemistry (IHC) revealed that certain metabolic and repair-related processes were selectively induced in livers with severe NAFLD. These findings will facilitate the development of novel diagnostic tests and treatments that target the subgroup of “presymptomatic” NAFLD patients who are at greatest risk for bad NAFLD outcomes. Materials and Methods Detailed methods for each section are provided in the Supporting Materials. Patient Selection and Clinical Variables We conducted a cross-sectional study utilizing prospectively collected data from NAFLD subjects in the Duke University Health System NAFLD Biorepository (Duke University, Durham, NC). This biorepository was approved by our Institutional Review Board and contains frozen liver biopsies and clinical data from NAFLD patients who underwent a diagnostic liver biopsy to grade and stage severity of disease as part of the standard of care. For the present study, NAFLD was defined as (1) presence of >5% hepatic steatosis on liver biopsy and (2) absence of histologic and serologic evidence for other chronic liver disease in a patient with risk factors for metabolic syndrome (MetS). Patients were selected for inclusion based on histologically defined liver fibrosis stage, a key determinant of clinical outcome.5 Two groups at the extremes of NAFLD formed the discovery cohort: “mild” NAFLD, defined as fibrosis stages 0 or 1 (n = 53), and thus little probability of developing clinically significant liver disease over the next one to two decades, and “severe” NAFLD, defined as fibrosis stage 3 or 4 (n = 56) and thus significant likelihood of developing liver-related morbidity and mortality over the same period (i.e., bad NAFLD outcomes). Groups were matched for gender, age (±5 years), and body mass index (BMI; kg/m2; ±3 points). Frozen liver biopsies and clinical data from a second, independent cohort of patients (n = 40) with biopsy-proven NAFLD were identified in the same manner to evaluate the predictive performance of the gene profile (validation cohort). Demographic data (i.e., height, weight, BMI, age, gender, race, ethnicity, smoking status, and comorbid illnesses) and laboratory studies (i.e., lipids, glucose, hemoglobin A1c [HbA1c], liver aminotransferases, and measures of liver synthetic function) were obtained within 6 months of liver biopsy in all patients. Rigorous quality-control procedures resulted in final analyses of 72 patients in the discovery cohort and 17 patients in the validation cohort (Supporting Fig. 1; Supporting Tables 1-6). Liver Biopsy and Histopathological Analysis Biorepository liver samples are remnants from clinically indicated liver biopsies. Samples were snap-frozen in liquid nitrogen and stored at −80°C. The bulk of each liver biopsy had been processed for routine histology. For the present study, liver slides were re-reviewed and scored by a liver pathologist blinded to the clinical and laboratory data. Severity of NAFLD-related injury and fibrosis were graded and scored according to published criteria.4 RNA Preparation See the Methods section of the Supporting Materials for a detailed review of RNA preparation procedures. Microarray Hybridization and Gene Expression Analysis Microarray hybridization was performed on Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays (Affymetrix Inc., Santa Clara, CA), using MessageAmp Premier (Applied Biosystems, Foster City, CA) for RNA amplification and hybridization. Data are publically available through the National Center for Biotechnology Information (GSE31803). Differential gene expression was determined using limma (R/Bioconductor statistical package).14 Results were corrected for multiple testing by Benjamini-Hochberg's method to control the false discovery rate at 5%. We built and performed validation of the gene expression profiles associated with severe NAFLD using Support Vector Machines (SVM). qRT-PCR TaqMan qRT-PCR was used to validate the differential expression of eight randomly selected genes identified in the gene profile. Using the available remaining total RNA from selected liver biopsy samples, the RT reaction was performed using the High-Capacity cDNA Archive Kit (Applied Biosystems) using random hexamer priming according to the manufacturer's protocol. Pathway and Functional Enrichment Analysis We used the Ingenuity Pathways Analysis (IPA; Ingenuity Systems, Inc., Redwood City, CA, www.ingenuity.com) tool to examine biological functions and disease as well as functional relationships between genes and gene networks. IHC Formalin-fixed, paraffin-embedded liver biopsy samples from a subset of patients (n = 24; 13 mild NAFLD and 11 severe NAFLD) were available for IHC staining. The primary antibodies used were Sonic Hedgehog (SHH), glioblastoma 2 (GLI2), keratin 7 (K7), alpha smooth muscle actin (α-SMA), and sex-determining region Y-box 9 (SOX9). Statistical Analysis Demographic, laboratory, histologic, and IHC data were compared between groups using t tests or Wilcoxon's rank-sum tests for continuous predictors and chi-squared or Fisher's exact tests for categorical variables. All tests of significance were two-sided with a P value ≤0.05 considered significant. Multiple logistic regression analysis was used to assess gene associations with severe NAFLD while controlling for HbA1c, BMI, age, and gender (P < 0.0005 considered significant). All analyses were done using R statistical packages (www.r-project.org) or JMP7 statistical software (SAS Institute Inc., Cary, NC). Results Patient Characteristics The 72 patients in the discovery cohort included 40 with mild NAFLD and 32 with severe NAFLD (Table 1). As others have reported,15 patients with mild NAFLD had a lower prevalence of diabetes mellitus (DM) than those with severe NAFLD, but did not differ significantly in other components of the MetS, such as obesity, hypertension, or hyperlipidemia, or medication use that might affect NASH. In contrast, histologic characteristics reflecting disease severity differed among severe NAFLD patients and those with mild NAFLD: the severe NAFLD group had significantly more lobular inflammation, portal inflammation, hepatocyte ballooning, and included more patients with a NAFLD Activity Score (NAS) ≥5. The findings also demonstrate that fibrosis was an excellent predictor of global liver damage at the time of gene expression analysis in the present study. Clinical and histologic characteristics for the 10 mild NAFLD and 7 severe NAFLD patients in the validation cohort were comparable to those of the discovery cohort (Table 1). Table 1. Characteristics of the Discovery Cohort and the Validation Cohort Utilized in the NAFLD Gene Expression Analyses Discovery Cohort Comparison Patient Demographics and Clinical Characteristics Mild NAFLD (stage 0 and 1) (n = 40) Severe NAFLD (stage 3 and 4) (n = 32) P Value Discovery Cohort (n = 72) Validation Cohort (n = 17) P Value Male sex, n (%) 16 (40) 9 (28.1) 0.3 25 (34.7) 3 (17.6) 0.25 Age in years at biopsy, mean ± SD 49.9 ± 10.6 51.4 ± 11.7 0.57 50.54 ± 11 52.8 ± 8.7 0.44 Ethnicity 1 1 Non-Hispanic 39 (97.5) 28 (87.5) 67 (93.1) 14 (82.4) Hispanic 1 (2.5) 1 (3.1) 2 (2.8) 0 (0) Unknown 0 (0) 3 (9.4) 3 (4.1) 3 (17.6) Race 0.55 0.25 White 35 (87.5) 28 (87.5) 63 (87.5) 17 (100) Black 3 (7.5) 3 (9.4) 6 (8.3) 0 (0) Asian 2 (5) 0 (0) 2 (2.8) 0 (0) Hawaiian Pacific Islander 0 (0) 1 (3.1) 1 (1.4) 0 (0) BMI, median kg/m2 (IQR)a 32.5 (29.2-40.1) 33.8 (31.3-41.9) 0.23 33.7 (29.5-40.4) 37.2 (32.2-45.8) 0.31 Hypertension, n (%) 20 (50) 23 (72) 0.06 43 (59.7) 12 (70.6) 0.58 DM, n (%) 8 (20) 19 (59.4) <0.01 27 (37.5) 10 (58.8) 0.17 HbA1c, median % (IQR)b 5.9 (5.4-6.4) 6.6 (5.9-7.2) 0.003 6 (5.6-6.7) 6.3 (5.7-7.2) 0.36 Hyperlipidemia, n (%) 25 (62.5) 18 (56.3) 0.59 43 (59.7) 14 (82.4) 0.1 Current smoking, n (%)c 1 (2.6) 3 (10.7) 0.3 4 (6.2) 2 (11.8) 0.6 Medications Vitamin E, n (%) 3 (7.5) 0 (100) 0.25 3 (4.2) 0 (0) 1 Fish oil, n (%) 9 (22.5) 5 (15.6) 0.46 14 (19.4) 5 (29.4) 0.37 Statins, n (%) 7 (17.5) 6 (19.4) 0.89 13 (18.1) 5 (29.4) 0.30 Laboratory measures, median (IQR)c Serum AST, U/L 38 (26.8-64.3) 58 (37-72.5) 0.12 44 (32-72) 50 (21-74.5) 0.98 Serum ALT, U/L 50.5 (32.2-93.3) 71 (34.5-90.5) 0.84 51 (33-91) 53 (26.3-97.8) 0.84 AST/ALT 0.75 (0.58-1) 0.98 (0.64-1.26) 0.1 0.79 (0.62-1.10) 0.92 (0.77-1.08) 0.25 Histologic characteristics, n (%) Steatosis (% ≥34%) 23 (57.5) 19 (59.4) 0.87 42 (58.3) 5 (29.4) 0.06 Lobular inflammation (% ≥grade 2)d 7 (18.9) 13 (43.3) 0.03 20 (29.9) 5 (29.4) 1 Portal inflammation (% > mild)d 9 (24.3) 21 (67.7) <0.01 30 (44.1) 5 (29.4) 0.41 Ballooning (% any)a 26 (65) 30 (93.8) 0.004 56 (77.8) 13 (81.3) 1 NAS (% ≥5) 10 (25) 18 (56) 0.007 28 (38.9) 7 (41.2) 1 Fibrosis (% ≥stage 3) n/a n/a 32 (44.4) 7 (41.2) 1 NAS (range, 0-8) is a sum of scores for steatosis, lobular inflammation, and ballooning. Abbreviations: SD, standard deviation; IQR, interquartile range; ALT, alanine aminotransferase; n/a, not available. a Missing data for 1 patient. b Missing data for 14 patients. c Missing data for 6 patients. d Missing data for 4 patients. Gene Expression Differs Between Mild and Severe NAFLD In the discovery cohort, a total of 1,132 genes were significantly differentially expressed in patients with severe versus mild NAFLD. Unsupervised hierarchical clustering analysis of the top 100 differentially expressed probes revealed two distinct groups with minimal overlap (Fig. 1). No significant differences in gene expression were detected between patients with no fibrosis (n = 17) and stage 1 fibrosis (n = 23) using the same methodology. Gene Ontology (GO) analysis demonstrated that the top up-regulated genes in severe NAFLD included genes associated with biological functions, such as such as cell adhesion and migration (THBS2, EFEMP1, and DPT), development and extracellular matrix (ECM) organization (COL1A2, COL4A1, COL3A1, LUM, FBN1, and DKK3), and regulation of development, transcription and signal transduction (IGFBP7, ID4, EPHA3, and PDGFRA). Interestingly, many of the other top up-regulated genes were markers of adult liver progenitor cells, such as JAG1, EPCAM, SOX9, PROM1, and SPP1. The top down-regulated genes in severe NAFLD were generally involved in metabolism and included CYP2C19, DHRS2, OAT, MAT1A, GNMT, and DGAT2. Additional differentially expressed genes are shown in Supporting Table 7. Figure 1Open in figure viewerPowerPoint Hierarchical clustering analysis. Hierarchical clustering of the top 100 differentially expressed probes from the 72 NAFLD patients separated the samples into two main groups: mild NAFLD and severe NAFLD. Data are presented in heat-map format in which patient samples are shown in rows and genes (probes) in columns. Red color corresponds to genes that are up-regulated in severe NAFLD, as compared to the mean, and green color corresponds to genes that are down-regulated in severe NAFLD, as compared to the mean. IPA Identifies Dysregulation of Cancer, Cardiovascular Disease–, and Metabolism-Associated Genes in Severe NAFLD IPA is useful for revealing similarities between a poorly understood disease and other biologic processes that have been better characterized. This approach identified biological processes that were overrepresented among patients with severe NAFLD relative to mild NAFLD. A core IPA of the set of 1,132 differentially expressed genes revealed overlap with several biological processes, with three of the top five identified being cancer, genetic disorders, and cardiovascular disease (CVD) (Table 2). Closer inspection of the cancer category demonstrated overrepresentation of genes associated with liver cancer (P = 3.49 × 10−4) and colorectal carcinoma (P = 4.03 × 10−1), two cancers associated with NAFLD and the MetS.16, 17 For example, patients in our severe NAFLD cohort exhibited significant down-regulation of certain metabolic genes that IPA identified as having significant correlations with liver cancer and fibrosis, namely, MAT1A, GNMT, and DGAT2. In mouse models, inhibiting these gene products cause steatohepatitis (MAT1A, GNMT, and DGAT2), advanced liver fibrosis (GNMT and DGAT2), and hepatocellular carcinoma (HCC; MAT1A and GNMT).18-20 CVD pathways were also overrepresented in our severe NAFLD cohort, consistent with the known association between NASH and CVD,21 and corroborating a recent publication describing increased cardiovascular mortality in NAFLD patients with noninvasive evidence of advanced liver fibrosis.22 Table 2. IPA Top Biological Functions P Value Genes (n) Diseases and disorders Cancer 5.43 × 10−28 – 1.31 × 10−3 442 Reproductive system disease 1.61 × 10−16 – 2.30 × 10−4 267 Gastrointestinal disease 3.04 × 10−11 – 1.10 × 10−3 180 Cardiovascular disease 3.49 × 10−10 – 1.28 × 10−3 143 Genetic disorder 5.67 × 10−10 – 8.62 × 10−3 269 Molecular and cellular functions Cellular movement 1.10 × 10−14 – 1.29 × 10−3 219 Cellular growth and proliferation 9.27 × 10−13 – 1.01 × 10−3 337 Cell morphology 1.62 × 10−11 – 1.16 × 10−3 228 Cellular assembly and organization 2.88 × 10−11 – 1.19 × 10−3 196 Protein synthesis 7.91 × 10−10 – 2.20 × 10−4 47 Top canonical pathways Ratio Fatty acid metabolism 3.18 × 10−8 25/184 Valine, leucine, and isoleucine degradation 1.25 × 10−7 17/107 Bile acid biosynthesis 2.23 × 10−7 15/105 Glycine, serine, and threonine metabolism 3.11 × 10−6 16/147 Butanoate metabolism 5.65 × 10−6 14/128 Top toxicology functions Hepatotoxicity HCC 3.49 × 10−4 – 1.77 × 10−1 54 Liver cholestasis 1.10 × 10−3 – 1.66 × 10−1 15 Liver necrosis/cell death 1.36 × 10−3 – 5.71 × 10−1 26 Liver hepatitis 1.43 × 10−3 – 2.60 × 10−1 20 Liver proliferation 1.80 × 10−3 – 3.51 × 10−1 20 The data represent the number of genes that are either up- or down-regulated in severe NAFLD, relative to mild NAFLD. Biological functions, canonical pathways, and toxicological functions were assigned to the overall analysis using findings that have been extracted from the scientific literature and stored in the IPA. A Fisher's exact test corrected for multiple testing by Benjamini-Hochberg's method was used to calculate a q-value determining the probability that the function or pathway assigned to the analysis is explained by chance alone. Table 3. Sixty-Four-Gene Profile of Severe NAFLD Affymetrix Probe ID Gene Symbol Gene Title GO and Function Percentage Appears 1,000 Iterationsa 224694_at ANTXR1 Anthrax toxin receptor 1 Cell adhesion, tumor specific endothelial cell marker 100 209047_at AQP1 Aquaporin 1 Transepithelial water transport, positive regulation of fibroblast proliferation 100 207542_s_at 71 213429_at BICC1 Bicaudal C homolog 1 Modulates protein translation during embryonic development 100 202992_at C7 Complement component 7 Response to wounding, complement and coagulation cascades 100 208651_x_at CD24 CD24 molecule Cell adhesion, regulation of epithelial cell differentiation, Wnt signaling, hypoxia response 100 209771_x_at 100 216379_x_at 100 266_s_at 100 208650_s_at 98 228335_at CLDN11 Claudin 11 Cell adhesion, tight junctions 100 202404_s_at COL1A2 Collagen, type I, alpha 2 ECM organization, TGF-β signaling, focal adhesion, PDGF signaling 100 202403_s_at 96 211161_s_at COL3A1 Collagen, type III, alpha 1 ECM organization, focal adhesion, 100 215076_s_at integrin and PDGF signaling, TGF-β signaling 100 201852_x_at 94 211980_at COL4A1 Collagen, type IV, alpha 1 ECM organization, focal adhesion, signaling, epithelial cell differentiation 100 206336_at CXCL6 Chemokine (C-X-C motif) ligand 6 Response to wounding 100 209335_at DCN Decorin ECM organization, organ morphogenesis, TGF-β signaling 100 214247_s_at DKK3 Dickkopf homolog 3 100 221127_s_at Wnt signaling, embryonic development 68 202196_s_at 63 213068_at DPT Dermatopontin Cell adhesion, ECM organization and interactions 100 213071_at 201842_s_at EFEMP1 EGF-containing fibulin-like ECM protein 1 ECM organization, cell adhesion, cell migration 100 201843_s_at 201839_s_at EPCAM Epithelial cell adhesion molecule Cell adhesion, embryonic stem cell proliferation and differentiation 100 206070_s_at EPHA3 EPH receptor A3 Signal transduction, response to cytokine stimulus 100 202766_s_at FBN1 fibrillin 1 ECM organization and structure, integrin interactions 100 204472_at GEM GTP-binding protein overexpressed in skeletal muscle Immune response, receptor mediated signal transduction regulatory protein 100 209291_at ID4 Inhibitor of DNA binding 4, dominant negative helix-loop-helix protein Regulation of DNA binding and transcription, 100 209292_at TGF-β signaling 59 201163_s_at IGFBP7 Insulin-like growth factor binding protein 7 Cell adhesion, cell growth and proliferation 100 205422_s_at ITGBL1 Integrin, beta-like 1 Cell adhesion, integrin signaling 100 214927_at 100 231993_at 100 1557080_s_at 80 209099_x_at JAG1 Jagged 1 Notch signaling, cell migration and proliferation, morphogenesis 100 216268_s_at 201744_s_at LUM Lumican ECM organization, epithelial cell migration 100 225782_at MSRB3 Methionine sulfoxide reductase B3 Oxidation-reduction, stress response 100 230081_at PLCXD3 Phosphatidylinositol-specific phospholipase C, X domain containing 3 Lipid metabolism, signal transduction 100 203083_at THBS2 Thrombospondin 2 ECM interactions, focal adhesion, TGF-β signaling 100 204
Load More