CA
Carol Arnosti
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
2,313
h-index:
45
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Anthropogenic perturbation of the carbon fluxes from land to ocean

Pierre Regnier et al.Jun 7, 2013
A substantial amount of atmospheric carbon taken up on land is transported laterally from upland terrestrial ecosystems to the ocean. A synthesis of the available literature suggests that human activities have significantly increased soil carbon inputs to inland waters, but have only slightly affected carbon delivery to the open ocean. A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr−1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr−1) or sequestered in sediments (∼0.5 Pg C yr−1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr−1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr−1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr−1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.
0
Paper
Citation1,151
0
Save
0

Capturing Single Cell Genomes of Active Polysaccharide Degraders: An Unexpected Contribution of Verrucomicrobia

Manuel Martínez‐García et al.Apr 20, 2012
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.
0
Paper
Citation246
0
Save
0

Verrucomicrobia Are Candidates for Polysaccharide-Degrading Bacterioplankton in an Arctic Fjord of Svalbard

Z. Cardman et al.Apr 12, 2014
ABSTRACT In Arctic marine bacterial communities, members of the phylum Verrucomicrobia are consistently detected, although not typically abundant, in 16S rRNA gene clone libraries and pyrotag surveys of the marine water column and in sediments. In an Arctic fjord (Smeerenburgfjord) of Svalbard, members of the Verrucomicrobia , together with Flavobacteria and smaller proportions of Alpha - and Gammaproteobacteria , constituted the most frequently detected bacterioplankton community members in 16S rRNA gene-based clone library analyses of the water column. Parallel measurements in the water column of the activities of six endo-acting polysaccharide hydrolases showed that chondroitin sulfate, laminarin, and xylan hydrolysis accounted for most of the activity. Several Verrucomicrobia water column phylotypes were affiliated with previously sequenced, glycoside hydrolase-rich genomes of individual Verrucomicrobia cells that bound fluorescently labeled laminarin and xylan and therefore constituted candidates for laminarin and xylan hydrolysis. In sediments, the bacterial community was dominated by different lineages of Verrucomicrobia , Bacteroidetes , and Proteobacteria but also included members of multiple phylum-level lineages not observed in the water column. This community hydrolyzed laminarin, xylan, chondroitin sulfate, and three additional polysaccharide substrates at high rates. Comparisons with data from the same fjord in the previous summer showed that the bacterial community in Smeerenburgfjord changed in composition, most conspicuously in the changing detection frequency of Verrucomicrobia in the water column. Nonetheless, in both years the community hydrolyzed the same polysaccharide substrates.
0
Paper
Citation197
0
Save
6

Selfish bacteria are active throughout the water column of the ocean

Greta Giljan et al.Jul 26, 2021
Heterotrophic bacteria use extracellular enzymes to hydrolyze high molecular weight (HMW) organic matter to low molecular weight (LMW) hydrolysis products that can be taken into the cell. These enzymes represent a considerable investment of carbon, nitrogen, and energy, yet the return on this investment is uncertain, since hydrolysis of a HMW substrate outside a cell yields LMW products that can be lost to diffusion and taken up by scavengers that do not produce extracellular enzymes 1 . However, an additional strategy of HMW organic matter utilization, ‘selfish’ uptake 2 , is used for polysaccharide degradation, and has recently been found to be widespread among bacterial communities in surface ocean waters 3 . During selfish uptake, polysaccharides are bound at the cell surface, initially hydrolyzed, and transported into the periplasmic space without loss of hydrolysis products 2 , thereby retaining hydrolysate for the selfish bacteria and reducing availability of LMW substrates to scavenging bacteria. Here we show that selfish bacteria are common not only in the sunlit upper ocean, where polysaccharides are freshly produced by phytoplankton, but also deeper in the oceanic water column, including in bottom waters at depths of more than 5,500 meters. Thus, the return on investment, and therefore also the supply of suitable polysaccharides, must be sufficient to maintain these organisms.
6
Citation1
0
Save
0

Distinct actors drive different mechanisms of biopolymer processing in polar marine coastal sediments

Katrin Knittel et al.Jul 1, 2024
Heterotrophic bacteria in the ocean initiate biopolymer degradation using extracellular enzymes that yield low molecular weight hydrolysis products in the environment, or by using a selfish uptake mechanism that retains the hydrolysate for the enzyme-producing cell. The mechanism used affects the availability of hydrolysis products to other bacteria, and thus also potentially the composition and activity of the community. In marine systems, these two mechanisms of substrate processing have been studied in the water column, but to date, have not been investigated in sediments. In surface sediments from an Arctic fjord of Svalbard, we investigated mechanisms of biopolymer hydrolysis using four polysaccharides and mucin, a glycoprotein. Extracellular hydrolysis of all biopolymers was rapid. Moreover, rapid degradation of mucin suggests that it may be a key substrate for benthic microbes. Although selfish uptake is common in ocean waters, only a small fraction (0.5%-2%) of microbes adhering to sediments used this mechanism. Selfish uptake was carried out primarily by Planctomycetota and Verrucomicrobiota. The overall dominance of extracellular hydrolysis in sediments, however, suggests that the bulk of biopolymer processing is carried out by a benthic community relying on the sharing of enzymatic capabilities and scavenging of public goods.
42

A Sea Change in Microbial Enzymes: Heterogeneous latitudinal and depth-related gradients in bulk water and particle-associated enzymatic activities from 30°S to 59°N in the Pacific Ocean

John Balmonte et al.Oct 20, 2020
Abstract Heterotrophic microbes initiate organic matter degradation using extracellular enzymes. Our understanding of differences in microbial enzymatic capabilities, especially among particle-associated taxa and in the deep ocean, is limited by a paucity of hydrolytic enzyme activity measurements. Here, we measured the activities of a broad range of hydrolytic enzymes (glucosidases, peptidases, polysaccharide hydrolases) in epipelagic to bathypelagic bulk water (non-size fractionated), and on particles (≥ 3 μm) along a 9,800 km latitudinal transect from 30°S in the South Pacific to 59°N in the Bering Sea. Individual enzyme activities showed heterogeneous latitudinal and depth-related patterns, with varying biotic and abiotic correlates. With increasing latitude and decreasing temperature, lower laminarinase activities sharply contrasted with higher leucine aminopeptidase (leu-AMP) and chondroitin sulfate hydrolase activities in bulk water. Endopeptidases (chymotrypsins, trypsins) exhibited patchy spatial patterns, and their activities can exceed rates of the widely-measured exopeptidase, leu-AMP. Compared to bulk water, particle-associated enzymatic profiles featured a greater relative importance of endopeptidases, a broader spectrum of polysaccharide hydrolases, and latitudinal and depth-related trends that paralleled variations in particle fluxes. As water depth increased, enzymatic spectra on particles and in bulk water became narrower, and diverged more from one another. These distinct latitudinal and depth-related gradients of enzymatic activities underscore the biogeochemical consequences of emerging global patterns of microbial community structure and function, from surface to deep waters, and among particle-associated taxa.
42
0
Save
0

Global ecotypes in the ubiquitous marine clade SAR86

Adrienne Hoarfrost et al.May 10, 2019
SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different SAR86 subgroups may be endemic to specific ocean regions and functionally specialized for unique marine environments. However, the global biogeographical distributions of SAR86 genes, and the manner in which these distributions correlate with marine environments, have not been investigated. We quantified SAR86 gene content across globally-distributed metagenomic samples and modeled these gene distributions as a function of 51 environmental variables. We identified five distinct clusters of genes within the SAR86 pangenome, each with a unique geographic distribution associated with specific environmental characteristics. Gene clusters are characterized by strong taxonomic enrichment of distinct SAR86 genomes and partial assemblies, as well as differential enrichment of certain functional groups, suggesting differing functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene clusters across the world's oceans, creating global maps of SAR86 ecotype distributions. Our results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a framework for exploring geographic distributions of genetic diversity from other microbial clades.
0

Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom

Greta Reintjes et al.Jan 9, 2020
Spring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a selfish mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides, and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode was related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.
Load More