ZA
Zachary Azadian
Author with expertise in Tuberculosis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
6
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

A chemical-genetic map of the pathways controlling drug potency in Mycobacterium tuberculosis

Shuqi Li et al.Nov 27, 2021
ABSTRACT Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb’s intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that govern drug efficacy could facilitate the development of more effective therapies to overcome resistance, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. To define these pathways, we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. Mining this dataset, we discovered diverse and novel mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical-genetics with comparative genomics of Mtb clinical isolates, we further identified numerous new potential mechanisms of acquired drug resistance, one of which is associated with the emergence of a multidrug-resistant tuberculosis (TB) outbreak in South America. Lastly, we make the unexpected discovery of an “acquired drug sensitivity.” We found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat TB. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future TB drug development and treatment.
58
Citation4
0
Save
12

Mutations in rv0678 confer low-level resistance to benzothiazinone DprE1 inhibitors in M. tuberculosis

Nicholas Poulton et al.Jun 29, 2022
ABSTRACT Tuberculosis (TB) is the leading cause of death from any bacterial infection, causing 1.5 million deaths worldwide each year. Due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) there have been significant efforts aimed at developing novel drugs to treat TB. One promising drug target in Mtb is the arabinogalactan biosynthetic enzyme DprE1, and there have been over a dozen unique chemical scaffolds identified which inhibit the activity of this protein. Among the most promising lead compounds are the benzothiazinones BTZ043 and PBTZ169, both of which are currently in or have completed phase IIa clinical trials. Due to the potential clinical utility of these drugs, we sought to identify potential synergistic interactions and new mechanisms of resistance using a genome-scale CRISPRi chemical-genetic screen with PBTZ169. We found that knockdown of rv0678 , the negative regulator of the mmpS5/L5 drug efflux pump, confers resistance to PBTZ169. Mutations in rv0678 are the most common form of resistance to bedaquiline and there is already abundant evidence of these mutations emerging in bedaquiline-treated patients. We confirmed that rv0678 mutations from clinical isolates confer low level cross-resistance to BTZ043 and PBTZ169. While it is yet unclear whether rv0678 mutations would render benzothiazinones ineffective in treating TB, these results highlight the importance of monitoring for clinically-prevalent rv0678 mutations during ongoing BTZ043 and PBTZ169 clinical trials.
12
Citation1
0
Save