MF
Michael Freeling
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(83% Open Access)
Cited by:
10,138
h-index:
83
/
i10-index:
178
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Sorghum bicolor genome and the diversification of grasses

Andrew Paterson et al.Jan 1, 2009
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance. The Sorghum bicolor genome sequence is published this week. Sorghum is a cereal grown widely as food, animal feed, fibre and fuel. Tolerant to hot, dry conditions, it is a staple for large populations in the West African Sahel region. Comparisons of the genome with those of maize and rice shed light on the evolution of grasses and of C4 photosynthesis, which is particularly efficient at assimilating carbon at high temperatures. In addition, protein coding genes and miRNAs that could contribute to sorghum's drought tolerance may also be found. Sorghum yield improvement has lagged behind that of other crops and the availability of the genome sequence could provide a vital boost to work on its improvement. Sorghum is an African grass that is grown for food, animal feed and fuel. The current paper presents an initial analysis of the ∼730 megabase genome of Sorghum bicolor. Genome analysis and its comparison with maize and rice shed light on grass genome evolution and also provide insights into the evolution of C4 photosynthesis, as well as protein coding genes and miRNAs that might contribute to sorghum's drought tolerance.
0
Citation2,890
0
Save
0

The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Ray Ming et al.Apr 1, 2008
In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic fruit tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic fruit tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.
0
Citation1,036
0
Save
0

Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss

James Schnable et al.Feb 22, 2011
Ancient tetraploidies are found throughout the eukaryotes. After duplication, one copy of each duplicate gene pair tends to be lost (fractionate). For all studied tetraploidies, the loss of duplicated genes, known as homeologs, homoeologs, ohnologs, or syntenic paralogs, is uneven between duplicate regions. In maize, a species that experienced a tetraploidy 5-12 million years ago, we show that in addition to uneven ancient gene loss, the two complete genomes contained within maize are differentiated by ongoing fractionation among diverse inbreds as well as by a pattern of overexpression of genes from the genome that has experienced less gene loss. These expression differences are consistent over a range of experiments quantifying RNA abundance in different tissues. We propose that the universal bias in gene loss between the genomes of this ancient tetraploid, and perhaps all tetraploids, is the result of selection against loss of the gene responsible for the majority of total expression for a duplicate gene pair. Although the tetraploidy of maize is ancient, biased gene loss and expression continue today and explain, at least in part, the remarkable genetic diversity found among modern maize cultivars.
0
Citation662
0
Save
0

Origin and evolution of the octoploid strawberry genome

Patrick Edger et al.Feb 25, 2019
Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry. Chromosome-scale assembly for the cultivated octoploid strawberry (Fragaria × ananassa) uncovers the origin and evolutionary processes that shaped this complex allopolyploid, providing a useful resource for genome-wide analyses and molecular breeding.
0
Citation536
0
Save
0

The pineapple genome and the evolution of CAM photosynthesis

Ray Ming et al.Nov 2, 2015
Ray Ming, Robert Paull, Qingyi Yu and colleagues report the genome sequences of two cultivated pineapple varieties and one wild pineapple relative. Their analysis supports the use of the pineapple as a reference genome for monocot comparative genomics and provides insight into the evolution of crassulacean acid metabolism photosynthesis. Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.
0
Citation534
0
Save
0

Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes

Brian Thomas et al.Jun 7, 2006
Approximately 90% of Arabidopsis' unique gene content is found in syntenic blocks that were formed during the most recent whole-genome duplication. Within these blocks, 28.6% of the genes have a retained pair; the remaining genes have been lost from one of the homeologs. We create a minimized genome by condensing local duplications to one gene, removing transposons, and including only genes within blocks defined by retained pairs. We use a moving average of retained and non-retained genes to find clusters of retention and then identify the types of genes that appear in clusters at frequencies above expectations. Significant clusters of retention exist for almost all chromosomal segments. Detailed alignments show that, for 85% of the genome, one homeolog was preferentially (1.6x) targeted for fractionation. This homeolog fractionation bias suggests an epigenetic mechanism. We find that islands of retention contain "connected genes," those genes predicted-by the gene balance hypothesis-to be resistant to removal because the products they encode interact with other products in a dose-sensitive manner, creating a web of dependency. Gene families that are overrepresented in clusters include those encoding components of the proteasome/protein modification complexes, signal transduction machinery, ribosomes, and transcription factor complexes. Gene pair fractionation following polyploidy or segmental duplication leaves a genome enriched for "connected" genes. These clusters of duplicate genes may help explain the evolutionary origin of coregulated chromosomal regions and new functional modules.
0
Citation421
0
Save
0

Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids

Eric Lyons et al.Oct 24, 2008
In addition to the genomes of Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa), two near-complete rosid genome sequences, grape (Vitis vinifera) and papaya (Carica papaya), have been recently released. The phylogenetic relationship among these four genomes and the placement of their three independent, fractionated tetraploidies sum to a powerful comparative genomic system. CoGe, a platform of multiple whole or near-complete genome sequences, provides an integrative Web-based system to find and align syntenic chromosomal regions and visualize the output in an intuitive and interactive manner. CoGe has been customized to specifically support comparisons among the rosids. Crucial facts and definitions are presented to clearly describe the sorts of biological questions that might be answered in part using CoGe, including patterns of DNA conservation, accuracy of annotation, transposability of individual genes, subfunctionalization and/or fractionation of syntenic gene sets, and conserved noncoding sequence content. This précis of an online tutorial, CoGe with Rosids (http://tinyurl.com/4a23pk), presents sample results graphically.
0
Citation406
0
Save
Load More