AH
Andrea Hasenstaub
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
3,055
h-index:
25
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neocortical Network ActivityIn VivoIs Generated through a Dynamic Balance of Excitation and Inhibition

Bilal Haider et al.Apr 26, 2006
D
A
A
B
The recurrent excitatory and inhibitory connections between and within layers of the cerebral cortex are fundamental to the operation of local cortical circuits. Models of cortical function often assume that recurrent excitation and inhibition are balanced, and we recently demonstrated that spontaneous network activity in vitro contains a precise balance of excitation and inhibition; however, the existence of a balance between excitation and inhibition in the intact and spontaneously active cerebral cortex has not been directly tested. We examined this hypothesis in the prefrontal cortex in vivo , during the slow (<1 Hz) oscillation in ketamine–xylazine-anesthetized ferrets. We measured persistent network activity (Up states) with extracellular multiple unit and local field potential recording, while simultaneously recording synaptic currents in nearby cells. We determined the reversal potential and conductance change over time during Up states and found that the body of Up state activity exhibited a steady reversal potential (−37 mV on average) for hundreds of milliseconds, even during substantial (21 nS on average) changes in membrane conductance. Furthermore, we found that both the initial and final segments of the Up state were characterized by significantly more depolarized reversal potentials and concomitant increases in excitatory conductance, compared with the stable middle portions of Up states. This ongoing temporal evolution between excitation and inhibition, which exhibits remarkable proportionality within and across neurons in active local networks, may allow for rapid transitions between relatively stable network states, permitting the modulation of neuronal responsiveness in a behaviorally relevant manner.
0

Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks

Andrea Hasenstaub et al.Aug 1, 2005
+3
B
Y
A
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex.
0

Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential

Yousheng Shu et al.Apr 12, 2006
+2
A
A
Y
4

The Clustered Gamma Protocadherin Pcdhγc4 Isoform Regulates Cortical Interneuron Programmed Cell Death in the Mouse Cortex

Walter Leon et al.Feb 4, 2023
+8
F
D
W
Abstract Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins ( Pcdhγ ), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Here we show that the sole deletion of the Pcdhγc4 isoform, but not of the other 21 isoforms in the Pcdhγ gene cluster, increased cIN cell death in mice during the normal period of programmed cell death. Viral expression of the Pcdhγc4 isoform rescued transplanted cINs lacking Pcdhγ from cell death. We conclude that Pcdhγ , specifically Pcdhγc4 , plays a critical role in regulating the survival of cINs during their normal period of cell death. This demonstrates a novel specificity in the role of Pcdhγ isoforms in cortical development.
4
Citation1
0
Save
1

The h-current controls cortical recurrent network activity through modulation of dendrosomatic communication

Yousheng Shu et al.Jul 12, 2023
D
A
Y
Abstract A fundamental feature of the cerebral cortex is the ability to rapidly turn on and off maintained activity within ensembles of neurons through recurrent excitation balanced by inhibition. Here we demonstrate that reduction of the h-current, which is especially prominent in pyramidal cell dendrites, strongly increases the ability of local cortical networks to generate maintained recurrent activity. Reduction of the h-current resulted in hyperpolarization and increase in input resistance of both the somata and apical dendrites of layer 5 pyramidal cells, while strongly increasing the dendrosomatic transfer of low (<20 Hz) frequencies, causing an increased responsiveness to dynamic clamp-induced recurrent network-like activity injected into the dendrites and substantially increasing the duration of spontaneous Up states. We propose that modulation of the h-current may strongly control the ability of cortical networks to generate recurrent persistent activity and the formation and dissolution of neuronal ensembles.
1
Citation1
0
Save
0

Transplanted cells are essential for the induction but not the expression of cortical plasticity

Mahmood Hoseini et al.May 20, 2019
+4
Q
B
M
Transplantation of even a small number of embryonic inhibitory neurons from the medial ganglionic eminence (MGE) into postnatal visual cortex makes it lose responsiveness to an eye deprived of vision when the transplanted neurons reach the age of the normal critical period of activity-dependent ocular dominance (OD) plasticity. The transplant might induce OD plasticity in the host circuitry or might instead construct a parallel circuit of its own to suppress cortical responses to the deprived-eye. We transplanted MGE neurons expressing archaerhodopsin, closed one eyelid for 4-5 days, and, as expected, observed transplant-induced OD plasticity. This plasticity was evident even when the activity of the transplanted cells was suppressed optogenetically, demonstrating that the plasticity was produced by changes in the host visual cortex.
0

Sst- and Vip-Cre mouse lines without age-related hearing loss

Calvin Foss et al.Jul 18, 2024
A
J
T
C
GABAergic interneurons, including somatostatin (SST) and vasoactive intestinal peptide (VIP) positive cells, play a crucial role in cortical circuit processing. Cre recombinase-mediated manipulation of these interneurons is facilitated by commercially available knock-in mouse strains such as Sst-IRES-Cre (Sst-Cre) and Vip-IRES-Cre (Vip-Cre). However, these strains are troublesome for hearing research because they are only available on the C57BL/6 genetic background, which suffer from early onset age-related hearing loss (AHL) due to a mutation of the Cdh23 gene. To overcome this limitation, we backcrossed Sst-Cre and Vip-Cre mice to CBA mice to create normal-hearing offspring with the desired Cre transgenes. We confirmed that in these "CBA Cre" lines, Cre drives appropriate expression of Cre-dependent genes, by crossing CBA Cre mice to Ai14 reporter mice. To assess the hearing capabilities of the CBA Cre mice, we measured auditory brainstem responses (ABRs) using clicks and tones. CBA Cre mice showed significantly lower ABR thresholds compared to C57 control mice at 3, 6, 9, and 12 months. In conclusion, our study successfully generated Sst-Cre and Vip-Cre mouse lines on the CBA background that will be valuable tools for investigating the roles of SST and VIP positive interneurons without the confounding effects of age-related hearing loss.
10

Visual modulation of spectrotemporal receptive fields in mouse auditory cortex

James Bigelow et al.Aug 7, 2021
+2
T
R
J
Abstract Recent studies have established significant anatomical and functional connections between visual areas and primary auditory cortex (A1), which may be important for perceptual processes such as communication and spatial perception. However, much remains unknown about the microcircuit structure of these interactions, including how visual context may affect different cell types across cortical layers, each with diverse responses to sound. The present study examined activity in putative excitatory and inhibitory neurons across cortical layers of A1 in awake male and female mice during auditory, visual, and audiovisual stimulation. We observed a subpopulation of A1 neurons responsive to visual stimuli alone, which were overwhelmingly found in the deep cortical layers and included both excitatory and inhibitory cells. Other neurons for which responses to sound were modulated by visual context were similarly excitatory or inhibitory but were less concentrated within the deepest cortical layers. Important distinctions in visual context sensitivity were observed among different spike rate and timing responses to sound. Spike rate responses were themselves heterogeneous, with stronger responses evoked by sound alone at stimulus onset, but greater sensitivity to visual context by sustained firing activity following transient onset responses. Minimal overlap was observed between units with visual-modulated firing rate responses and spectrotemporal receptive fields (STRFs) which are sensitive to both spike rate and timing changes. Together, our results suggest visual information in A1 is predominantly carried by deep layer inputs and influences sound encoding across cortical layers, and that these influences independently impact qualitatively distinct responses to sound. Significance statement Multisensory integration is ubiquitous throughout the brain, including primary sensory cortices. The present study examined visual responses in primary auditory cortex, which were found in both putative excitatory and inhibitory neurons and concentrated in the deep cortical layers. Visual-modulated responses to sound were similarly observed in excitatory and inhibitory neurons but were more evenly distributed throughout cortical layers. Visual modulation moreover differed substantially across distinct sound response types. Transient stimulus onset spike rate changes were far less sensitive to visual context than sustained spike rate changes during the remainder of the stimulus. Spike timing changes were often modulated independently of spike rate changes. Audiovisual integration in auditory cortex is thus diversely expressed among cell types, cortical layers, and response types.
0

Clustered γ-Protocadherins Regulate Cortical Interneuron Programmed Cell Death

Walter Leon et al.Jan 15, 2020
+8
B
W
W
Cortical function critically depends on inhibitory/excitatory balance. GABAergic cortical inhibitory interneurons (cINs) are born in the ventral forebrain. After completing their migration into cortex, their final numbers are adjusted-during a period of postnatal development - by programmed cell death (PCD). The mechanisms that regulate cIN elimination remain controversial. Here we show that genes in the protocadherin (Pcdh)-γ gene cluster, but not in the Pcdh-α or Pcdh-β clusters, are required for survival of cINs through a BAX-dependent mechanism. Surprisingly, the physiological and morphological properties of Pcdh-γ deficient and wild type cINs during PCD were indistinguishable. Co-transplantation of wild type and Pcdh-γ deficient interneuron precursor cells demonstrate that: 1) the number of mutant cINs eliminated was much higher than that of wild type cells, but the proportion of mutant or WT cells undergoing cell death was not affected by their density; 2) the presence of mutant cINs increases cell death among wild-type counterparts, and 3) cIN survival is dependent on the expression of Pcdh-γ C3, C4, and C5. We conclude that Pcdh-γ, and specifically γC3, γC4, and γC5, play a critical role in regulating cIN survival during the endogenous period of PCD.Significance GABAergic cortical inhibitory interneurons (cINs) in the cerebral cortex originate from the ventral embryonic forebrain. After a long migration, they come together with local excitatory neurons to form cortical circuits. These circuits are responsible for higher brain functions, and the improper balance of excitation/inhibition in the cortex can result in mental diseases. Therefore, an understanding of how the final number of cINs is determined is both biologically and, likely, therapeutically significant. Here we show that cell surface homophilic binding proteins belonging to the clustered protocadherin gene family, specifically three isoforms in the Pcdh-γ cluster, play a key role in the regulation cIN programmed cell death. Co-transplantation of mutant and wild-type cINs shows that Pcdh-γ genes have cell-autonomous and non-cell autonomous roles in the regulation of cIN cell death. This work will help identify the molecular mechanisms and cell-cell interactions that determine how the proper ratio of excitatory to inhibitory neurons is determined in the cerebral cortex.
Load More