ML
Matthew Lang
Author with expertise in Regulatory T Cell Development and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
852
h-index:
43
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Third-order nonlinear time domain probes of solvation dynamics

Taiha Joo et al.Apr 22, 1996
+2
J
Y
T
Several closely related third-order nonlinear time-resolved spectroscopic techniques, pump/probe transient absorption, transient grating, and three pulse stimulated photon echo peak shift measurements, are investigated theoretically and experimentally. It is shown in detail, through the consideration of response functions and numerical simulations including both finite pulse durations and detuning from exact resonance, how the solvation dynamics are manifested in these third-order nonlinear time-resolved spectroscopies. It is shown that the three pulse stimulated photon echo peak shift measurement and the transient grating measurement can give accurate dynamical information, whereas transient absorption may not be a reliable technique for a study of solvation dynamics in some cases. The contribution of very slow or static (inhomogeneous) components to the dynamics, however, can only be obtained from the three pulse echo peak shift measurements. Comprehensive experimental measurements are presented to illustrate and corroborate the calculations. We show that it is possible to separate the intramolecular vibrational and solvent contributions to the dephasing (or optical lineshape). Furthermore it is shown that the solvation of polar solutes in polar protic solvents has rather universal characteristics. The initial ultrafast process, usually identified as an inertial response of solvent molecules, occurs on a ∼100 fs time scale, and is essentially identical in methanol, ethanol, and butanol. The amplitude of this ultrafast component does, however, decrease with increasing alcohol size in 1-alkanols. The diffusive (≳0.5 ps) regime of the solvation process shows a strong solvent dependence, and may be described satisfactorily by dielectric relaxation theories.
0
Citation477
0
Save
0

The αβ T Cell Receptor Is an Anisotropic Mechanosensor

Sun Kim et al.Sep 16, 2009
+6
Z
K
S
Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric αβ, CD3ϵγ, CD3ϵδ, and CD3ζζ subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3ϵ lobe that they approach diagonally, adjacent to the lever-like Cβ FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3ϵ and CD3γ in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force (∼50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands. Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric αβ, CD3ϵγ, CD3ϵδ, and CD3ζζ subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3ϵ lobe that they approach diagonally, adjacent to the lever-like Cβ FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3ϵ and CD3γ in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force (∼50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.
34

A kinesin-1 variant reveals motor-induced microtubule damage in cells

Breane Budaitis et al.Oct 20, 2021
+5
Y
S
B
Abstract Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks, however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate defects in the microtubule lattice as compared to the wild-type motor. Expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the altered motility properties of the mutant motor as expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased a-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro , lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and microtubule growth whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.
34
Citation6
0
Save
0

Multiscale Characterization of Complex Binding Interactions of Cellulolytic Enzymes Highlights Limitations of Classical Approaches

Shishir Chundawat et al.May 10, 2020
+10
M
B
S
Abstract Cellulolytic microorganisms, like Trichoderma reesei or Clostridium thermocellum , frequently have non-catalytic carbohydrate-binding modules (CBMs) associated with secreted or cell surface bound multidomain carbohydrate-active enzymes (CAZymes) like cellulases. Mostly type-A family CBMs are known to promote cellulose deconstruction by increasing the substrate-bound concentration of cognate cellulase catalytic domains. However, due to the interfacial nature of cellulose hydrolysis and the structural heterogeneity of cellulose, it has been challenging to fully understand the role of CBMs on cellulase activity using classical protein-ligand binding assays. Here, we report a single-molecule CAZyme assay for an industrially relevant processive cellulase Cel7A (from T. reesei ) to reveal how subtle CBM1 binding differences can drastically impact cellulase motility/velocity and commitment to initial processive motion for deconstruction of two well-studied crystalline cellulose allomorphs (namely cellulose I and III). We take a multifaceted approach to characterize the complex binding interactions of all major type-A family representative CBMs including CBM1, using an optical-tweezers based single-molecule CBM-cellulose bond ‘rupture’ assay to complement several classical bulk ensemble protein-ligand binding characterization methods. While our work provides a basis for the ‘cautious’ use of Langmuir-type adsorption models to characterize classical protein-ligand binding assay data, we highlight the critical limitations of using such overly simplistic models to gain a truly molecular-level understanding of interfacial protein binding interactions at heterogeneous solid-liquid interfaces. Finally, molecular dynamics simulations provided a theoretical basis for the complex binding behavior seen for CBM1 towards two distinct cellulose allomorphs reconciling experimental findings from multiscale analytical methods. Significance Statement Multimodal biomolecular binding interactions involving carbohydrate polymers (e.g., cellulose, starch, chitin, glycosaminoglycans) are fundamental molecular processes relevant to the recognition, biosynthesis, and degradation of all major terrestrial and aquatic biomass. Protein-carbohydrate binding interactions are also critical to industrial biotechnology operations such as enzymatically-catalyzed bioconversion of starch and lignocellulose into biochemicals like ethanol. However, despite the ubiquitous importance of such interfacial processes, we have a poor molecular-level understanding of protein-polysaccharide binding interactions. Here, we provide a comprehensive experimental and theoretical analysis of bulk ensemble versus single-molecule binding interactions of enzyme motors and associated non-catalytic binding domains with cellulosic polysaccharides to highlight the critical limitations of applying classical biochemical assay techniques alone to understanding protein adsorption or biological activity at solid-liquid interfaces.
0
Citation1
0
Save
0

Parsing digital or analogue TCR performance through piconewton forces

Aoi Akitsu et al.Nov 30, 2023
+16
Y
E
A
αβ T-cell receptors (TCRs) recognize aberrant peptides bound to major histocompatibility complex molecules (pMHCs) on unhealthy cells, amplifying specificity and sensitivity through physical load placed on the TCR-pMHC bond during immunosurveillance. To understand this mechanobiology, TCRs stimulated by abundantly and sparsely arrayed epitopes (NP 366-374 /D b and PA 224-233 /D b , respectively) following in vivo influenza A virus infection were studied with optical tweezers. While certain NP repertoire CD8 T lymphocytes require many ligands for activation, others are digital, needing just few. Conversely, all PA TCRs perform digitally, exhibiting pronounced bond lifetime increases through sustained, energizing volleys of structural transitioning. Optimal digital performance is superior in vivo, correlating with ERK phosphorylation, CD3 loss, and activation marker upregulation in vitro . Given neoantigen array paucity, digital TCRs are likely critical for immunotherapies.Quality of ligand recognition in a T-cell repertoire is revealed through application of physical load on clonal T-cell receptor (TCR)-pMHC bonds.
1

Pre-T cell receptor Self-MHC Sampling Restricts Thymocyte Dedifferentiation

Jonathan Duke‐Cohan et al.Apr 29, 2022
+5
R
A
J
Summary paragraph Programming T lymphocytes to distinguish self from non-self is a vital, multi-step process arising in the thymus 1–4 . Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, constitutes a critical early checkpoint in thymocyte development within the αβ T-cell lineage 5, 6 . Recent work demonstrates that preTCRs arrayed on double negative (DN) thymocytes, like αβ TCRs appearing on double positive (DP) thymocytes, ligate peptides bound to MHC molecules (pMHC) on thymic stroma but via a different molecular docking strategy 7–10 . Here we show the consequences of those distinctive interactions for thymocyte progression, using synchronized fetal thymic progenitor cultures differing in the presence or absence of pMHC on support stroma, determining single cell transcriptomes at key thymocyte developmental transitions. Although MHC negative stroma fosters αβ T lymphocyte differentiation, the absence of pMHC-preTCR interplay leads to deviant thymocyte transcriptional programming associated with de-differentiation. Highly proliferative DN and DP subsets with antecedent characteristics of T cell lymphoblastic and myeloid malignancies emerge. Thus, at least in vitro , beyond fostering β chain repertoire broadening for subsequent αβ TCR utilization, preTCR-pMHC interaction limits cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduces significant developmental vulnerabilities.
1

Asymmetric framework motion of TCRαβcontrols load-dependent peptide discrimination

Ana Chang-Gonzalez et al.Sep 13, 2023
+2
M
R
A
Abstract Mechanical force is critical for the interaction between an αβ T cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and β chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the C β FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCR αβ -pMHC agonist and antagonist complexes.