RG
Rachel Gilmore
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Generation of isogenic models of Angelman syndrome and Prader-Willi syndrome in CRISPR/Cas9-engineered human embryonic stem cells

Rachel Gilmore et al.Aug 30, 2023
Abstract Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS), two distinct neurodevelopmental disorders, result from loss of expression from imprinted genes in the chromosome 15q11-13 locus most commonly caused by a megabase-scale deletion on either the maternal or paternal allele, respectively. Each occurs at an approximate incidence of 1/15,000 to 1/30,000 live births and has a range of debilitating phenotypes. Patient-derived induced pluripotent stem cells (iPSCs) have been valuable tools to understand human-relevant gene regulation at this locus and have contributed to the development of therapeutic approaches for AS. Nonetheless, gaps remain in our understanding of how these deletions contribute to dysregulation and phenotypes of AS and PWS. Variability across cell lines due to donor differences, reprogramming methods, and genetic background make it challenging to fill these gaps in knowledge without substantially increasing the number of cell lines used in the analyses. Isogenic cell lines that differ only by the genetic mutation causing the disease can ease this burden without requiring such a large number of cell lines. Here, we describe the development of isogenic human embryonic stem cell (hESC) lines modeling the most common genetic subtypes of AS and PWS. These lines allow for a facile interrogation of allele-specific gene regulation at the chromosome 15q11-q13 locus. Additionally, these lines are an important resource to identify and test targeted therapeutic approaches for patients with AS and PWS.
1
Citation1
0
Save
1

Identifying key underlying regulatory networks and predicting targets of orphan C/D boxSNORD116snoRNAs in Prader-Willi syndrome

Rachel Gilmore et al.Oct 5, 2023
Abstract Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily SNORD116 . This finding suggests SNORD116 is a direct driver of PWS phenotypes. The SNORD116 gene cluster is composed of 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However, SNORD116 snoRNAs are termed ‘orphans’ because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of SNORD116 snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted SNORD116 targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.
1

A calibrated cell-based functional assay to aide classification of MLH1 DNA mismatch repair gene variants

Abhijit Rath et al.Dec 14, 2021
ABSTRACT PURPOSE Functional assays provide important evidence for classifying the disease significance of germline variants in the DNA mismatch repair genes. We sought to develop a cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. METHODS Using CRISPR gene editing, we knocked-in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact at the RNA and protein level, including their ability to maintain stability of microsatellite sequences and instigate a DNA damage response. We calibrated these assays by testing well-established pathogenic and benign control variants. RESULTS Five VUS resulted in functionally abnormal protein, 15 VUS resulted in functionally normal protein, and one VUS showed mixed results. Furthermore, we converted the functional outputs into a single odds in favor of pathogenicity score for each VUS. CONCLUSION Our CRISPR-based functional assay successfully models phenotypes observed in patients in a cellular context. Using this approach, we generated evidence for or against pathogenicity for utilization by variant classification expert panels. Ultimately, this information will assist in proper diagnosis and disease management for suspected Lynch syndrome patients.
0

Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader–Willi syndrome

Rachel Gilmore et al.Oct 29, 2024
Abstract Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized by neonatal hypotonia, followed by hyperphagia and obesity. Most PWS cases exhibit megabase-scale deletions of paternally imprinted 15q11-q13 locus. However, several PWS patients have been identified harboring much smaller deletions encompassing the SNORD116 gene cluster, suggesting these genes are direct drivers of PWS phenotypes. This cluster contains 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of RNA molecules, often ribosomal RNA (rRNA). Conversely, SNORD116 snoRNAs show no significant complementarity to rRNA and their targets are unknown. Since many reported PWS cases lack their expression, it is crucial to identify the targets and functions of SNORD116. To address this we modeled PWS in two distinct human embryonic stem cell (hESC) lines with two different sized deletions, differentiated each into neurons, and compared differential gene expression. This analysis identified a novel set of 42 consistently dysregulated genes. These genes were significantly enriched for predicted SNORD116 targeting and we demonstrated impacts on FGF13 protein levels. Our results demonstrate the need for isogenic background comparisons and indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.