PV
Paul Vries
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(54% Open Access)
Cited by:
936
h-index:
45
/
i10-index:
100
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls

Jason Flannick et al.May 22, 2019
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts. Exome-sequencing analyses of a large cohort of patients with type 2 diabetes and control individuals without diabetes from five ancestries are used to identify gene-level associations of rare variants that are associated with type 2 diabetes.
0
Citation277
0
Save
0

CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis

Liang Guo et al.Feb 18, 2018
Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non–foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.
0

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

Madeline Kowalski et al.Dec 23, 2019
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11–34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
0
Citation228
0
Save
0

Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study

Kim Braun et al.Feb 7, 2017
DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.
0
Citation107
0
Save
0

Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium

Jordi Merino et al.Jul 9, 2018
Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10−6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
0
Citation50
0
Save
29

Genetic testing in ambulatory cardiology clinics reveals high rate of findings with clinical management implications

David Murdock et al.Dec 1, 2021
Cardiovascular disease (CVD) is the leading cause of death in adults in the United States, yet the benefits of genetic testing are not universally accepted.We developed the "HeartCare" panel of genes associated with CVD, evaluating high-penetrance Mendelian conditions, coronary artery disease (CAD) polygenic risk, LPA gene polymorphisms, and specific pharmacogenetic (PGx) variants. We enrolled 709 individuals from cardiology clinics at Baylor College of Medicine, and samples were analyzed in a CAP/CLIA-certified laboratory. Results were returned to the ordering physician and uploaded to the electronic medical record.Notably, 32% of patients had a genetic finding with clinical management implications, even after excluding PGx results, including 9% who were molecularly diagnosed with a Mendelian condition. Among surveyed physicians, 84% reported medical management changes based on these results, including specialist referrals, cardiac tests, and medication changes. LPA polymorphisms and high polygenic risk of CAD were found in 20% and 9% of patients, respectively, leading to diet, lifestyle, and other changes. Warfarin and simvastatin pharmacogenetic variants were present in roughly half of the cohort.Our results support the use of genetic information in routine cardiovascular health management and provide a roadmap for accompanying research.
29
Citation14
0
Save
0

Genetic discovery and translational decision support from exome sequencing of 20,791 type 2 diabetes cases and 24,440 controls from five ancestries

Jason Flannick et al.Jul 31, 2018
Abstract Protein-coding genetic variants that strongly affect disease risk can provide important clues into disease pathogenesis. Here we report an exome sequence analysis of 20,791 type 2 diabetes (T2D) cases and 24,440 controls from five ancestries. We identify rare (minor allele frequency<0.5%) variant gene-level associations in (a) three genes at exome-wide significance, including a T2D-protective series of >30 SLC30A8 alleles, and (b) within 12 gene sets, including those corresponding to T2D drug targets ( p =6.1×10 −3 ) and candidate genes from knockout mice ( p =5.2×10 −3 ). Within our study, the strongest T2D rare variant gene-level signals explain at most 25% of the heritability of the strongest common single-variant signals, and the rare variant gene-level effect sizes we observe in established T2D drug targets will require 110K-180K sequenced cases to exceed exome-wide significance. To help prioritize genes using associations from current smaller sample sizes, we present a Bayesian framework to recalibrate association p -values as posterior probabilities of association, estimating that reaching p <0.05 ( p <0.005) in our study increases the odds of causal T2D association for a nonsynonymous variant by a factor of 1.8 (5.3). To help guide target or gene prioritization efforts, our data are freely available for analysis at www.type2diabetesgenetics.org .
0
Citation6
0
Save
1

Rare coding variants in 35 genes associate with circulating lipid levels – a multi-ancestry analysis of 170,000 exomes

George Hindy et al.Dec 23, 2020
Abstract Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency<1%) predicted damaging coding variation using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels. Ten of these: ALB , SRSF2 , JAK2, CREB3L3 , TMEM136 , VARS , NR1H3 , PLA2G12A , PPARG and STAB1 have not been implicated for lipid levels using rare coding variation in population-based samples. We prioritize 32 genes identified in array-based genome-wide association study (GWAS) loci based on gene-based associations, of which three: EVI5, SH2B3 , and PLIN1 , had no prior evidence of rare coding variant associations. Most of the associated genes showed evidence of association in multiple ancestries. Also, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes, and for genes closest to GWAS index single nucleotide polymorphisms (SNP). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
1
Citation4
0
Save
50

Whole genome sequence analysis of blood lipid levels in >66,000 individuals

Margaret Selvaraj et al.Oct 12, 2021
Abstract Plasma lipids are heritable modifiable causal factors for coronary artery disease, the leading cause of death globally. Despite the well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing, partly due to limited sample sizes, ancestral diversity, and interpretation of potential clinical significance. Increasingly larger whole genome sequence datasets with plasma lipids coupled with methodologic advances enable us to more fully catalog the allelic spectrum for lipids. Here, among 66,329 ancestrally diverse (56% non-European ancestry) participants, we associate 428M variants from deep-coverage whole genome sequences with plasma lipids. Approximately 400M of these variants were not studied in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with plasma lipids through analysis of common and rare coding variants. We additionally discover several significantly associated rare non-coding variants largely at Mendelian lipid genes. Notably, we detect rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for plasma lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.
50
Citation2
0
Save
14

A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies

Zilin Li et al.Nov 8, 2021
Abstract Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare variants’ (RVs) associations with complex human traits. Variant set analysis is a powerful approach to study RV association, and a key component of it is constructing RV sets for analysis. However, existing methods have limited ability to define analysis units in the noncoding genome. Furthermore, there is a lack of robust pipelines for comprehensive and scalable noncoding RV association analysis. Here we propose a computationally-efficient noncoding RV association-detection framework that uses STAAR (variant-set test for association using annotation information) to group noncoding variants in gene-centric analysis based on functional categories. We also propose SCANG (scan the genome)-STAAR, which uses dynamic window sizes and incorporates multiple functional annotations, in a non-gene-centric analysis. We furthermore develop STAARpipeline to perform flexible noncoding RV association analysis, including gene-centric analysis as well as fixed-window-based and dynamic-window-based non-gene-centric analysis. We apply STAARpipeline to identify noncoding RV sets associated with four quantitative lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several noncoding RV associations in an additional 9,123 TOPMed samples.
14
Citation2
0
Save
Load More