AR
Alexander Reiner
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Super interactive promoters provide insight into cell type-specific regulatory networks in blood lineage cell types

Taylor Lagler et al.Mar 16, 2021
+6
V
M
T
Abstract Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se , while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type, and show enriched heritability of relevant blood cell trait(s). Importantly, this analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions.
8
Citation2
0
Save
0

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

Madeline Kowalski et al.Jul 2, 2019
+77
Z
H
M
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are still limited. In addition to the limited inclusion of these populations in genetic studies, these populations have more complex linkage disequilibrium structure that may reduce the number of variants associated with a phenotype. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with commercial genome-wide genotyping array data. We demonstrate that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhances gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3 to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels, respectively. Impressively, even for extremely rare variants with sample minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~20,000 self-identified African descent individuals and ~23,000 self-identified Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC (p=8.1×10−12) in African populations, rs11549407 with lower HGB (p=1.59×10−12) and HCT (p=1.13×10−9) in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of TOPMed imputation reference panel for identification of novel associations between rare variants and complex traits not previously detected in similar sized genome-wide studies of under-represented African and Hispanic/Latino populations.Author summary Admixed African and Hispanic/Latino populations remain understudied in genome-wide association and fine-mapping studies of complex diseases. These populations have more complex linkage disequilibrium (LD) structure that can impair mapping of variants associated with complex diseases and their risk factors. Genotype imputation represents an approach to improve genome coverage, especially for rare or ancestry-specific variation; however, these understudied populations also have smaller relevant imputation reference panels that need to be expanded to represent their more complex LD patterns. In this study, we leveraged >100,000 phased sequences generated from the multi-ethnic NHLBI TOPMed project to impute in admixed cohorts encompassing ~20,000 individuals of African ancestry (AAs) and ~23,000 Hispanics/Latinos. We demonstrated substantially higher imputation quality for low frequency and rare variants in comparison to the state-of-the-art reference panels (1000 Genomes Project and Haplotype Reference Consortium). Association analyses of ~35 million (AAs) and ~27 million (Hispanics/Latinos) variants passing stringent post-imputation filtering with quantitative hematological traits led to the discovery of associations with two rare variants in the HBB gene; one of these variants was replicated in an independent sample, and the other is known to cause anemia in the homozygous state. By comparison, the same HBB variants would not have been genome-wide significant using other state-of-the-art reference panels due to lower imputation quality. Our findings demonstrate the power of the TOPMed whole genome sequencing data for imputation and subsequent association analysis in admixed African and Hispanic/Latino populations.
0

Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program

Nannan Wang et al.Jul 24, 2024
+33
L
F
N
Abstract Circulating metabolite levels partly reflect the state of human health and diseases, and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally-diverse samples. We provided recommendations for outlier and imputation handling to process metabolite data, as well as a general analytical framework. We further performed a pooled analysis following our practical recommendations and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus - metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes, but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.
0

A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies

Xihao Li et al.Jan 1, 2023
+68
M
H
X
Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of NIPSNAP3A and an intergenic region on chromosome 1.