SH
Stefan Howorka
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
729
h-index:
49
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DNA Origami Lipid Membrane Interactions Defined at Single-Molecular Resolution

Elena Georgiou et al.Jan 1, 2023
S
Y
J
E
Rigid DNA nanostructures that bind to floppy bilayer membranes are of fundamental interest as they replicate biological cytoskeletons for synthetic biology, biosensing, and biological research. Here, we establish principles underpinning the controlled interaction of DNA structures and lipid bilayers. As membrane anchors mediate interaction, more than 20 versions of a core DNA nanostructure are built each carrying up to five individual cholesterol anchors of different steric accessibility within the 3D geometry. The structures binding to membrane vesicles of tunable curvature is determined with ensemble methods and by single-molecule localization microscopy. This screen yields quantitative and unexpected insight on which steric anchor points cause efficient binding. Strikingly, defined nanostructures with a single molecular anchor discriminate effectively between vesicles of different nanoscale curvatures which may be exploited to discern diagnostically relevant membrane vesicles based on size. Furthermore, we reveal anchor-mediated bilayer interaction to be co-controlled by non-lipidated DNA regions and localized membrane curvatures stemming from heterogenous lipid composition, which modifies existing biophysical models. Our study extends DNA nanotechnology to control interactions with bilayer membranes and thereby facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.
0

Lipidated DNA Nanostructures Target and Rupture Bacterial Membranes

Isabel Bennett et al.Jun 5, 2024
+2
M
J
I
Chemistry has the power to endow supramolecular nanostructures with new biomedically relevant functions. Here it is reported that DNA nanostructures modified with cholesterol tags disrupt bacterial membranes to cause microbial cell death. The lipidated DNA nanostructures bind more readily to cholesterol-free bacterial membranes than to cholesterol-rich, eukaryotic membranes. These highly negatively charged, lipidated DNA nanostructures cause bacterial cell death by rupturing membranes. Strikingly, killing is mediated by clusters of barrel-shaped nanostructures that adhere to the membrane without the involvement of expected bilayer-puncturing barrels. These DNA nanomaterials may inspire the development of polymeric or small-molecule antibacterial agents that mimic the principles of selective binding and rupturing to help combat antimicrobial resistance.