ŽK
Željka Krsnik
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,514
h-index:
20
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spatio-temporal transcriptome of the human brain

Hyo Kang et al.Oct 1, 2011
+23
F
Y
H
Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment. Gene expression controls and dictates everything from development and plasticity to ongoing neurogenesis in the brain, yet the temporal dynamics of transcription throughout the brain's lifetime have been mostly unknown. Here, two groups present a large gene-expression database from a variety of human brain samples ranging from before birth to over 80 years in age. Colantuoni et al. focus on the prefrontal cortex. Although they note significant expression pattern dynamics throughout development, they identify a consistent molecular architecture of transcription across subjects from different races despite the large number of genetic polymorphisms among them. Kang et al. produce a more comprehensive time course, exploring expression in 16 different brain areas, determining that the largest spatiotemporal variability occurs before birth, with transcriptomes in brain regions converging as we age.
0
Citation1,920
0
Save
0

Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis

Matthew Johnson et al.May 1, 2009
+7
C
Y
M

Summary

 Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. A whole-genome, exon-level expression analysis of 13 regions from left and right sides of the mid-fetal human brain revealed that 76% of genes are expressed, and 44% of these are differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as coexpression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. We show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. These data provide a wealth of biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.
0
Citation583
0
Save
0

Multiple roles of PIWIL1 in mouse neocorticogenesis

Barbara Viljetić et al.Feb 5, 2017
+9
J
L
B
Abstract PIWI-interacting RNAs (piRNAs) and their associated PIWI proteins play an important role in repressing transposable elements in animal germlines. However, little is known about the function of PIWI proteins and piRNAs in the developing brain. Here, we investigated the role of an important PIWI family member, Piwi-like protein 1 (Piwil1; also known as Miwi in mouse) in the developing mouse neocortex. Using a Piwil1 knock-out ( Piwil1 KO) mouse strain, we found that Piwil1 is essential for several steps of neocorticogenesis, including neocortical cell cycle, neuron migration and dendritogenesis. Piwil1 deletion resulted in increased cell cycle re-entry at embryonic day 17 (E17) when predominantly intracortically projecting neurons are being produced. Prenatal Piwil1 deletion increased the number of Pax6+ radial glia at postnatal day 0 (P0). Furthermore, Piwil1 deletion disrupted migration of Satb2+ neurons within deep layers at E17, P0 and P7. Satb2+ neurons showed increased co-localization with Bcl11b (also known as Ctip2), marker of subcortically projecting neurons. Piwil1 knockouts had disrupted neocortical circuitry represented by thinning of the corpus callosum and altered dendritogenesis. We further investigated if Piwil1 deletion disrupted expression levels of neocortical piRNAs by small RNA-sequencing in neocortex. We did not find differential expression of piRNAs in the neocortices of Piwil1 KO, while differences were observed in other Piwil1 KO tissues. This result suggests that Piwil1 may act independently of piRNAs and have novel roles in higher cognitive centers, such as neocortex. In addition, we report a screen of piRNAs derived from tRNA fragments in developing neocortices. Our result is the first report of selective subsets of piRNAs and tRNA fragments in developing prenatal neocortices and helps clarify some outstanding questions about the role of the piRNA pathway in the brain.
0
Citation10
0
Save
1

Spatiotemporal dynamics of human microglia are linked with brain developmental processes across the lifespan

David Menassa et al.Aug 7, 2021
+11
B
I
D
SUMMARY Microglia, the brain’s resident macrophages, shape neural development and wiring, and are key neuroimmune hubs in the pathological signature of neurodevelopmental disorders. In the human brain, microglial development has not been carefully examined yet, and most of our knowledge derives from rodents. We established an unprecedented collection of 97 postmortem tissues enabling quantitative, sex-matched, detailed analysis of microglial across the human lifespan. We identify the dynamics of these cells in the human telencephalon, describing novel waves in microglial density across gestation and infancy, controlled by a balance of proliferation and apoptosis, which track key neurodevelopmental milestones. These profound changes in microglia are also observed in bulk RNAseq and single-cell RNAseq datasets. This study provides unparalleled insight and detail into the spatiotemporal dynamics of microglia across the human lifespan. Our findings serve as a solid foundation for elucidating how microglia contribute to shaping neurodevelopment in humans.
1
Citation1
0
Save
1

Deep learning microstructure estimation of developing brains from diffusion MRI: a newborn and fetal study

Hamza Kebiri et al.Jul 2, 2023
+3
L
A
H
Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation of FODs requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results to standard methods such as Constrained Spherical Deconvolution. We demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical datasets of newborns and fetuses. Additionally, we compute agreement metrics within the HARDI newborn dataset, and validate fetal FODs with post-mortem histological data. The results of this study show the advantage of deep learning in inferring the microstructure of the developing brain from in-vivo dMRI measurements that are often very limited due to subject motion and limited acquisition times, but also highlight the intrinsic limitations of dMRI in the analysis of the developing brain microstructure. These findings, therefore, advocate for the need for improved methods that are tailored to studying the early development of human brain.
0

Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene-dose-sensitive AD-suppressor in human brain

Ivan Alić et al.Jan 31, 2020
+39
P
J
I
A population of >6 million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome-21-gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21-organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1-inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.