JW
Jacco Wallinga
Author with expertise in Modeling the Dynamics of COVID-19 Pandemic
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
9,876
h-index:
58
/
i10-index:
159
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases

Joël Mossong et al.Mar 19, 2008
+11
M
N
J
Background Mathematical modelling of infectious diseases transmitted by the respiratory or close-contact route (e.g., pandemic influenza) is increasingly being used to determine the impact of possible interventions. Although mixing patterns are known to be crucial determinants for model outcome, researchers often rely on a priori contact assumptions with little or no empirical basis. We conducted a population-based prospective survey of mixing patterns in eight European countries using a common paper-diary methodology. Methods and Findings 7,290 participants recorded characteristics of 97,904 contacts with different individuals during one day, including age, sex, location, duration, frequency, and occurrence of physical contact. We found that mixing patterns and contact characteristics were remarkably similar across different European countries. Contact patterns were highly assortative with age: schoolchildren and young adults in particular tended to mix with people of the same age. Contacts lasting at least one hour or occurring on a daily basis mostly involved physical contact, while short duration and infrequent contacts tended to be nonphysical. Contacts at home, school, or leisure were more likely to be physical than contacts at the workplace or while travelling. Preliminary modelling indicates that 5- to 19-year-olds are expected to suffer the highest incidence during the initial epidemic phase of an emerging infection transmitted through social contacts measured here when the population is completely susceptible. Conclusions To our knowledge, our study provides the first large-scale quantitative approach to contact patterns relevant for infections transmitted by the respiratory or close-contact route, and the results should lead to improved parameterisation of mathematical models used to design control strategies.
0

Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020

Jantien Backer et al.Feb 6, 2020
J
D
J
A novel coronavirus (2019-nCoV) is causing an outbreak of viral pneumonia that started in Wuhan, China. Using the travel history and symptom onset of 88 confirmed cases that were detected outside Wuhan in the early outbreak phase, we estimate the mean incubation period to be 6.4 days (95% credible interval: 5.6–7.7), ranging from 2.1 to 11.1 days (2.5th to 97.5th percentile). These values should help inform 2019-nCoV case definitions and appropriate quarantine durations.
0

How generation intervals shape the relationship between growth rates and reproductive numbers

Jacco Wallinga et al.Nov 28, 2006
M
J
Mathematical models of transmission have become invaluable management tools in planning for the control of emerging infectious diseases. A key variable in such models is the reproductive number R. For new emerging infectious diseases, the value of the reproductive number can only be inferred indirectly from the observed exponential epidemic growth rate r. Such inference is ambiguous as several different equations exist that relate the reproductive number to the growth rate, and it is unclear which of these equations might apply to a new infection. Here, we show that these different equations differ only with respect to their assumed shape of the generation interval distribution. Therefore, the shape of the generation interval distribution determines which equation is appropriate for inferring the reproductive number from the observed growth rate. We show that by assuming all generation intervals to be equal to the mean, we obtain an upper bound to the range of possible values that the reproductive number may attain for a given growth rate. Furthermore, we show that by taking the generation interval distribution equal to the observed distribution, it is possible to obtain an empirical estimate of the reproductive number.
0

Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study

Fatimah Dawood et al.Jun 26, 2012
+28
C
A
F
18,500 laboratory-confirmed deaths caused by the 2009 pandemic influenza A H1N1 were reported worldwide for the period April, 2009, to August, 2010. This number is likely to be only a fraction of the true number of the deaths associated with 2009 pandemic influenza A H1N1. We aimed to estimate the global number of deaths during the first 12 months of virus circulation in each country.We calculated crude respiratory mortality rates associated with the 2009 pandemic influenza A H1N1 strain by age (0-17 years, 18-64 years, and >64 years) using the cumulative (12 months) virus-associated symptomatic attack rates from 12 countries and symptomatic case fatality ratios (sCFR) from five high-income countries. To adjust crude mortality rates for differences between countries in risk of death from influenza, we developed a respiratory mortality multiplier equal to the ratio of the median lower respiratory tract infection mortality rate in each WHO region mortality stratum to the median in countries with very low mortality. We calculated cardiovascular disease mortality rates associated with 2009 pandemic influenza A H1N1 infection with the ratio of excess deaths from cardiovascular and respiratory diseases during the pandemic in five countries and multiplied these values by the crude respiratory disease mortality rate associated with the virus. Respiratory and cardiovascular mortality rates associated with 2009 pandemic influenza A H1N1 were multiplied by age to calculate the number of associated deaths.We estimate that globally there were 201,200 respiratory deaths (range 105,700-395,600) with an additional 83,300 cardiovascular deaths (46,000-179,900) associated with 2009 pandemic influenza A H1N1. 80% of the respiratory and cardiovascular deaths were in people younger than 65 years and 51% occurred in southeast Asia and Africa.Our estimate of respiratory and cardiovascular mortality associated with the 2009 pandemic influenza A H1N1 was 15 times higher than reported laboratory-confirmed deaths. Although no estimates of sCFRs were available from Africa and southeast Asia, a disproportionate number of estimated pandemic deaths might have occurred in these regions. Therefore, efforts to prevent influenza need to effectively target these regions in future pandemics.None.
0

Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures

Jacco WallingaSep 7, 2004
J
Severe acute respiratory syndrome (SARS) has been the first severe contagious disease to emerge in the 21st century. The available epidemic curves for SARS show marked differences between the affected regions with respect to the total number of cases and epidemic duration, even for those regions in which outbreaks started almost simultaneously and similar control measures were implemented at the same time. The authors developed a likelihood-based estimation procedure that infers the temporal pattern of effective reproduction numbers from an observed epidemic curve. Precise estimates for the effective reproduction numbers were obtained by applying this estimation procedure to available data for SARS outbreaks that occurred in Hong Kong, Vietnam, Singapore, and Canada in 2003. The effective reproduction numbers revealed that epidemics in the various affected regions were characterized by markedly similar disease transmission potentials and similar levels of effectiveness of control measures. In controlling SARS outbreaks, timely alerts have been essential: Delaying the institution of control measures by 1 week would have nearly tripled the epidemic size and would have increased the expected epidemic duration by 4 weeks.
0

Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents

Jacco Wallinga et al.Sep 12, 2006
M
P
J
The estimation of transmission parameters has been problematic for diseases that rely predominantly on transmission of pathogens from person to person through small infectious droplets. Age-specific transmission parameters determine how such respiratory agents will spread among different age groups in a human population. Estimating the values of these parameters is essential in planning an effective response to potentially devastating pandemics of smallpox or influenza and in designing control strategies for diseases such as measles or mumps. In this study, the authors estimated age-specific transmission parameters by augmenting infectious disease data with auxiliary data on self-reported numbers of conversational partners per person. They show that models that use transmission parameters based on these self-reported social contacts are better able to capture the observed patterns of infection of endemically circulating mumps, as well as observed patterns of spread of pandemic influenza. The estimated age-specific transmission parameters suggested that school-aged children and young adults will experience the highest incidence of infection and will contribute most to further spread of infections during the initial phase of an emerging respiratory-spread epidemic in a completely susceptible population. These findings have important implications for controlling future outbreaks of novel respiratory-spread infectious agents.
0

Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020

Tapiwa Ganyani et al.Apr 30, 2020
+4
D
C
T
BackgroundEstimating key infectious disease parameters from the coronavirus disease (COVID-19) outbreak is essential for modelling studies and guiding intervention strategies.AimWe estimate the generation interval, serial interval, proportion of pre-symptomatic transmission and effective reproduction number of COVID-19. We illustrate that reproduction numbers calculated based on serial interval estimates can be biased.MethodsWe used outbreak data from clusters in Singapore and Tianjin, China to estimate the generation interval from symptom onset data while acknowledging uncertainty about the incubation period distribution and the underlying transmission network. From those estimates, we obtained the serial interval, proportions of pre-symptomatic transmission and reproduction numbers.ResultsThe mean generation interval was 5.20 days (95% credible interval (CrI): 3.78-6.78) for Singapore and 3.95 days (95% CrI: 3.01-4.91) for Tianjin. The proportion of pre-symptomatic transmission was 48% (95% CrI: 32-67) for Singapore and 62% (95% CrI: 50-76) for Tianjin. Reproduction number estimates based on the generation interval distribution were slightly higher than those based on the serial interval distribution. Sensitivity analyses showed that estimating these quantities from outbreak data requires detailed contact tracing information.ConclusionHigh estimates of the proportion of pre-symptomatic transmission imply that case finding and contact tracing need to be supplemented by physical distancing measures in order to control the COVID-19 outbreak. Notably, quarantine and other containment measures were already in place at the time of data collection, which may inflate the proportion of infections from pre-symptomatic individuals.
0

Practical considerations for measuring the effective reproductive number, Rt

Katelyn Gostic et al.Dec 10, 2020
+23
E
L
K
Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.
0

A systematic review of social contact surveys to inform transmission models of close contact infections

Thang Hoang et al.Mar 31, 2018
+5
A
P
T
Abstract Social contact data are increasingly being used to inform models for infectious disease spread with the aim of guiding effective policies on disease prevention and control. In this paper, we undertake a systematic review of the study design, statistical analyses and outcomes of the many social contact surveys that have been published. Our primary focus is to identify the designs that have worked best and the most important determinants and to highlight the most robust findings. Two publicly accessible online databases were systematically searched for articles regarding social contact surveys. PRISMA guidelines were followed as closely as possible. In total, 64 social contact surveys were identified. These surveys were conducted in 24 countries, and more than 80% of the surveys were conducted in high-income countries. Study settings included general population (58%), schools/universities (37%) and health care/conference/research institutes (5%). The majority of studies did not focus on a specific age group (38%), whereas others focused on adults (32%) or children (19%). Retrospective and prospective designs were used mostly (45% and 41% of the surveys, respectively) with 6% using both for comparison purposes. The definition of a contact varied among surveys, e.g. a non-physical contact may require conversation, close proximity or both. Age, time schedule (e.g., weekday/weekend) and household size were identified as relevant determinants for contact pattern across a large number of studies. The surveys present a wide range of study designs. Throughout, we found that the overall contact patterns were remarkably robust for the study details. By considering the most common approach in each aspect of design (e.g., sampling schemes, data collection, definition of contact), we could identify a common practice approach that can be used to facilitate comparison between studies and for benchmarking future studies.
0
Citation20
0
Save
0

New method to reconstruct phylogenetic and transmission trees with sequence data from infectious disease outbreaks

Don Klinkenberg et al.Aug 12, 2016
+2
X
J
D
Abstract Whole-genome sequencing (WGS) of pathogens from host samples becomes more and more routine during infectious disease outbreaks. These data provide information on possible transmission events which can be used for further epidemiologic analyses, such as identification of risk factors for infectivity and transmission. However, the relationship between transmission events and WGS data is obscured by uncertainty arising from four largely unobserved processes: transmission, case observation, within-host pathogen dynamics and mutation. To properly resolve transmission events, these processes need to be taken into account. Recent years have seen much progress in theory and method development, but applications are tailored to specific datasets with matching model assumptions and code, or otherwise make simplifying assumptions that break up the dependency between the four processes. To obtain a method with wider applicability, we have developed a novel approach to reconstruct transmission trees with WGS data. Our approach combines elementary models for transmission, case observation, within-host pathogen dynamics, and mutation. We use Bayesian inference with MCMC for which we have designed novel proposal steps to efficiently traverse the posterior distribution, taking account of all unobserved processes at once. This allows for efficient sampling of transmission trees from the posterior distribution, and robust estimation of consensus transmission trees. We implemented the proposed method in a new R package phybreak . The method performs well in tests of both new and published simulated data. We apply the model to to five datasets on densely sampled infectious disease outbreaks, covering a wide range of epidemiological settings. Using only sampling times and sequences as data, our analyses confirmed the original results or improved on them: the more realistic infection times place more confidence in the inferred transmission trees. Author Summary It is becoming easier and cheaper to obtain whole genome sequences of pathogen samples during outbreaks of infectious diseases. If all hosts during an outbreak are sampled, and these samples are sequenced, the small differences between the sequences (single nucleotide polymorphisms, SNPs) give information on the transmission tree, i.e. who infected whom, and when. However, correctly inferring this tree is not straightforward, because SNPs arise from unobserved processes including infection events, as well as pathogen growth and mutation within the hosts. Several methods have been developed in recent years, but none so generic and easily accessible that it can easily be applied to new settings and datasets. We have developed a new model and method to infer transmission trees without putting prior limiting constraints on the order of unobserved events. The method is easily accessible in an R package implementation. We show that the method performs well on new and previously published simulated data. We illustrate applicability to a wide range of infectious diseases and settings by analysing five published datasets on densely sampled infectious disease outbreaks, confirming or improving the original results.
0
Citation5
0
Save
Load More