Background: Transposable elements (TEs) are primarily responsible for the changes in genome sequences that occur over time within and between species. TEs themselves evolve, with clade specific LTR/ERV, LINEs and SINEs responsible for the bulk of species specific genomic features. Because TEs can contain regulatory motifs, they can be exapted as regulators of gene expression. While TE insertions can provide evolutionary novelty for the regulation of gene expression, their overall impact on the evolution of gene expression is unclear. Previous investigators have shown that tissue specific gene expression in amniotes is more similar across species than within species, supporting the existence of conserved developmental gene regulation. In order to understand how species specific TE insertions might affect the evolution/conservation of gene expression, we have looked at the association of gene expression in six tissues with TE insertions in six representative amniote genomes (human, opossum, platypus, anole lizard, bearded dragon and chicken). Results: We have used a novel bootstrapping approach to minimise the conflation of effects of repeat types on gene expression. We compared the expression of orthologs containing different types of recent TE insertions to orthologs that contained older TE insertions and found significant differences in gene expression associated with TE insertions. Likewise, we compared the expression of non-ortholog genes containing different types of recent TE insertions to non-orthologs with older TE insertions and found significant differences in gene expression associated with TE insertions. As expected TEs were associated with species-specific changes in gene expression, but the magnitude and direction of change of expression changes were unexpected. Overall, orthologs containing clade specific TEs were associated with lower gene expression, while in non-orthologs, non clade-specific TEs were associated with higher gene expression. Exceptions were SINE elements in human and chicken, which had an opposite association with gene expression compared to other species. Conclusions: Our observed species-specific associations of TEs with gene expression support a role for TEs in speciation/response to selection by species. TEs do not exhibit consistent associations with gene expression and observed associations can vary depending on the age of TE insertions. Based on these observations, it would be prudent to refrain from extrapolating these and previously reported associations to distantly related species.