AI
Aaron Isaacs
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(73% Open Access)
Cited by:
9,312
h-index:
74
/
i10-index:
147
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity

Simone Wahl et al.Dec 20, 2016
Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
0
Citation814
0
Save
0

Common variants associated with plasma triglycerides and risk for coronary artery disease

Ron Do et al.Oct 6, 2013
Sekar Kathiresan and colleagues examine 185 common variants using a modified mendelian randomization approach and provide evidence supporting a causal role of triglyceride-rich lipoproteins in the development of coronary artery disease. Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10−8 for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
0
Citation808
0
Save
0

Whole-genome sequence variation, population structure and demographic history of the Dutch population

Laurent Beaugerie et al.Jun 29, 2014
Paul de Bakker, Cisca Wijmenga and colleagues report on The Genome of the Netherlands Project, including whole-genome sequencing of 769 individuals of Dutch ancestry from 250 parent-offspring families and construction of a phased haplotype map. Their intermediate-coverage population sequencing data set provides a complementary resource to other publicly available data sets, including the 1000 Genomes Project. Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (∼13×) and trio design enabled extensive characterization of structural variation, including midsize events (30–500 bp) previously poorly catalogued and de novo mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of future population studies.
0
Citation672
0
Save
1

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Bonder et al.Dec 5, 2016
Peter 't Hoen, Lude Franke, Bastiaan Heijmans and colleagues present a combined analysis of methylome and transcriptome data from a large collection of whole-blood samples to infer the downstream effects of disease-associated variants. They identify a large number of trait-associated SNPs influencing methylation of CpG sites in trans, providing insights into the downstream functional effects of many disease-associated variants. Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences1,2. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained3,4. The analysis of DNA methylation, a key component of the epigenome5,6, offers highly complementary data on the regulatory potential of genomic regions7,8. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.
1
Citation432
0
Save
0

The impact of low-frequency and rare variants on lipid levels

Ida Surakka et al.May 11, 2015
Samuli Ripatti and colleagues report the results of a genome-wide association study for circulating lipid levels based on 1000 Genomes Project imputation. Their results implicate several new loci, refine the association signals at many established loci and highlight the impact of low-frequency variants on lipid traits. Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
0
Citation345
0
Save
Load More