CF
Christopher Franklin
Author with expertise in Genomic Studies and Association Analyses
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
8
h-index:
30
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phenome-wide association studies (PheWAS) across large “real-world data” population cohorts support drug target validation

Dorothée Diogo et al.Nov 13, 2017
Abstract Phenome-wide association studies (PheWAS), which assess whether a genetic variant is associated with multiple phenotypes across a phenotypic spectrum, have been proposed as a possible aid to drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we evaluate whether PheWAS can inform target validation during drug development. We selected 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease therapeutic indications. We independently interrogated these SNPs through PheWAS in four large “real-world data” cohorts (23andMe, UK Biobank, FINRISK, CHOP) for association with a total of 1,892 binary endpoints. We then conducted meta-analyses for 145 harmonized disease endpoints in up to 697,815 individuals and joined results with summary statistics from 57 published GWAS. Our analyses replicate 70% of known GWAS associations and identify 10 novel associations with study-wide significance after multiple test correction (P<1.8x10 -6 ; out of 72 novel associations with FDR<0.1). By leveraging directionality and point estimate of the effect sizes, we describe new associations that may predict ADEs, e.g., acne, high cholesterol, gout and gallstones for rs738409 (p.I148M) in PNPLA3 ; or asthma for rs1990760 (p.T946A) in IFIH1 . We further propose how quantitative estimates of genetic safety/efficacy profiles can be used to help prioritize candidate targets for a specific indication. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery. One Sentence Summary Matching genetics with phenotypes in 800,000 individuals predicts efficacy and on-target safety of future drugs.
0
Citation8
0
Save
0

Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation

Laura Huckins et al.Feb 14, 2018
Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals. Despite having the highest mortality rate of any psychiatric disorder, little is known about the aetiology of AN, and few effective treatments exist. Global efforts to collect large sample sizes of individuals with AN have been highly successful, and a recent study consequently identified the first genome-wide significant locus involved in AN. This result, coupled with other recent studies and epidemiological evidence, suggest that previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, both neurological and metabolic pathways may also be involved. In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation (TI) methods approaches use machine-learning methods to impute tissue-specific gene expression from large genotype data using curated eQTL reference panels. These offer an exciting opportunity to compare gene associations across neurological and metabolic tissues. Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement (adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach). We identified 35 significant gene-tissue associations within the large chromosome 12 region described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and FINEMAP to associations within this locus to identify putatively causal signals. We identified four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10-07), and CUL3, in the caudate basal ganglia (p=1.8x10-06). These genes are significantly enriched for associations with anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic and psychiatric factors.
0

Shared Genetic Risk between Eating Disorder- and Substance-Use-Related Phenotypes: Evidence from Genome-Wide Association Studies

Melissa Munn‐Chernoff et al.Aug 23, 2019
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa (BN) and problem alcohol use (genetic correlation [rg], twin-based=0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge-eating, AN without binge-eating, and a BN factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder (MDD). Total sample sizes per phenotype ranged from ~2,400 to ~537,000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg=0.18; false discovery rate q=0.0006), cannabis initiation and AN (rg=0.23; q<0.0001), and cannabis initiation and AN with binge-eating (rg=0.27; q=0.0016). Conversely, significant negative genetic correlations were observed between three non-diagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge-eating (rgs=-0.19 to -0.23; qs<0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for MDD loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships between these behaviors.