AH
Anne Hafner
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Modelling fibrillogenesis of collagen-mimetic molecules

Anne Hafner et al.Jun 9, 2020
+2
C
N
A
One of the most robust examples of self-assembly in living organisms is the formation of collagen architectures. Collagen type I molecules are a crucial component of the extracellular-matrix where they self-assemble into fibrils of well defined striped patterns. This striped fibrilar pattern is preserved across the animal kingdom and is important for the determination of cell phenotype, cell adhesion, and tissue regulation and signalling. The understanding of the physical processes that determine such a robust morphology of self-assembled collagen fibrils is currently almost completely missing. Here we develop a minimal coarse-grained computational model to identify the physical principles of the assembly of collagen-mimetic molecules. We find that screened electrostatic interactions can drive the formation of collagen-like filaments of well-defined striped morphologies. The fibril pattern is determined solely by the distribution of charges on the molecule and is robust to the changes in protein concentration, monomer rigidity, and environmental conditions. We show that the fibril pattern cannot be easily predicted from the interactions between two monomers, but is an emergent result of multi-body interactions. Our results can help address collagen remodelling in diseases and ageing, and guide the design of collagen scaffolds for biotechnological applications. Statement of Significance Collagen type I protein is the most abundant protein in mammals. It is a crucial component of the extracellular-matrix where it robustly self-assembles into fibrils of specific striped architectures that are crucial for the correct collagen function. The molecular features that determine such robust fibril architectures are currently not well understood. Here we develop a minimal coarse-grained model to connect the design of collagen-like molecules to the architecture of the resulting self-assembled fibrils. We find that the pattern of charged residues on the surface of molecules can drive the formation of collagen-like fibrils and fully control their architectures. Our findings can help understand changes in collagen architectures observed in diseases and guide the design of synthetic collagen scaffolds.
10
Citation2
0
Save
0

Proteasome-mediated protein degradation resets the cell division cycle and triggers ESCRT-III-mediated cytokinesis in an archaeon

Gabriel Risa et al.Sep 18, 2019
+22
S
F
G
The archaeon Sulfolobus acidocaldarius is a relative of eukaryotes known to progress orderly through its cell division cycle despite lacking obvious CDK/cyclin homologues. Here, in exploring the mechanisms underpinning archaeal cell division cycle control, we show that the proteasome of S. acidocaldarius, like its eukaryotic counterpart, regulates the transition from the end of one cell division cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homologue CdvB as a key target of the proteasome, and show that state-dependent degradation of CdvB triggers archaeal cell division by allowing constriction of a CdvB1:CdvB2 ESCRT-III division ring. These findings suggest an ancient role for proteasome-mediated degradation in resetting the cell division cycle in both archaea and eukaryotes.
0

Spatial cytoskeleton organization supports targeted intracellular transport

Anne Hafner et al.Sep 15, 2017
H
A
The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.
1

Physical mechanisms of ESCRT-III-driven cell division in archaea

Lena Harker-Kirschneck et al.Mar 23, 2021
+8
T
A
L
Abstract Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by protein assemblies. Here we developed the first physical model for the division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. We show how active geometry changes of elastic ESCRT-III filaments, coupled to filament disassembly, are sufficient to efficiently split the cell. We explore how the non-equilibrium processes that govern the filament behaviour impact the resulting cell division. We show how a quantitative comparison between our simulations and dynamic data for ESCRTIII-mediated division in Sulfolobus acidocaldarius , the closest archaeal relative to eukaryotic cells that can currently be cultured in the lab, and reveal the most likely physical mechanism behind its division.