RC
Robert Citorik
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,421
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases

Robert Citorik et al.Sep 21, 2014
Delivery of CRISPR-Cas nucleases using bacteriophage enables targeted killing of microbes in a population Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.
0
Citation645
0
Save
1

Synthesis and patterning of tunable multiscale materials with engineered cells

Allen Chen et al.Mar 21, 2014
Many natural biological systems—such as biofilms, shells and skeletal tissues—are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells. Biofilms are multifunctional and environmentally responsive assemblies of living and non-living components. By using synthetic gene networks in engineered cells to regulate the production of extracellular amyloid fibrils, and by interfacing the fibrils with inorganic materials such as metal nanoparticles, stimuli-responsive synthetic biofilms with switchable functions and tunable composition and structure have now been produced.
0

Synthesis and patterning of tunable multiscale materials with engineered cells

Allen Chen et al.Feb 14, 2014
A major challenge in materials science is to create self-assembling, functional, and environmentally responsive materials which can be patterned across multiple length scales. Natural biological systems, such as biofilms, shells, and skeletal tissues, implement dynamic regulatory programs to assemble complex multiscale materials comprised of living and non-living components. Such systems can provide inspiration for the design of heterogeneous functional systems which integrate biotic and abiotic materials via hierarchical self-assembly. Here, we present a synthetic-biology platform for synthesizing and patterning self-assembled functional amyloid materials across multiple length scales with bacterial biofilms. We engineered Escherichia coli curli amyloid production under the tight control of synthetic regulatory circuits and interfaced amyloids with inorganic materials to create a biofilm-based electrical switch whose conductance can be selectively toggled by specific environmental signals. Furthermore, we externally tuned synthetic biofilms to build nanoscale amyloid biomaterials with different structure and composition through the controlled expression of their constituent subunits with artificial gene circuits. By using synthetic cell-cell communication, our engineered biofilms can also autonomously manufacture dynamic materials whose structure and composition change with time. In addition, we show that by combining subunit-level protein engineering, controlled genetic expression of self-assembling subunit proteins, and macroscale spatial gradients, synthetic biofilms can pattern protein biomaterials across multiple length scales. This work lays a foundation for synthesizing, patterning, and controlling composite materials with engineered biological systems. We envision that this approach can be expanded to other cellular and biomaterials contexts for the construction of self-organizing, environmentally responsive, and tunable multiscale composite materials with heterogeneous functionalities. Now published as: Nature Materials, doi:10.1038/nmat3912