MB
Maxime Borry
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
19
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir

James Yates et al.Sep 3, 2020
ABSTRACT Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual microbial taxa, microbial communities, and metagenomic assemblages. AncientMetagenomeDir (archived at https://doi.org/10.5281/zenodo.3980833 ) is a collection of indices of published genetic data deriving from ancient microbial samples that provides basic, standardised metadata and accession numbers to allow rapid data retrieval from online repositories. These collections are community-curated and span multiple sub-disciplines in order to ensure adequate breadth and consensus in metadata definitions, as well as longevity of the database. Internal guidelines and automated checks to facilitate compatibility with established sequence-read archives and term-ontologies ensure consistency and interoperability for future meta-analyses. This collection will also assist in standardising metadata reporting for future ancient metagenomic studies.
19
Paper
Citation4
0
Save
0

nf-core/taxprofiler: highly parallelised and flexible pipeline for metagenomic taxonomic classification and profiling

Sofia Stamouli et al.Oct 23, 2023
1 Abstract Metagenomic classification tackles the problem of characterising the taxonomic source of all DNA sequencing reads in a sample. A common approach to address the differences and biases between the many different taxonomic classification tools is to run metagenomic data through multiple classification tools and databases. This, however, is a very time-consuming task when performed manually - particularly when combined with the appropriate preprocessing of sequencing reads before the classification. Here we present nf-core/taxprofiler, a highly parallelised read-processing and taxonomic classification pipeline. It is designed for the automated and simultaneous classification and/or profiling of both short- and long-read metagenomic sequencing libraries against a 11 taxonomic classifiers and profilers as well as databases within a single pipeline run. Implemented in Nextflow and as part of the nf-core initiative, the pipeline benefits from high levels of scalability and portability, accommodating from small to extremely large projects on a wide range of computing infrastructure. It has been developed following best-practise software development practises and community support to ensure longevity and adaptability of the pipeline, to help keep it up to date with the field of metagenomics.
0
Paper
Citation1
0
Save
1

PyDamage: automated ancient damage identification and estimation for contigs in ancient DNAde novoassembly

Maxime Borry et al.Mar 24, 2021
ABSTRACT DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs), including genes and even genomes, from short DNA sequencing reads. Applying this technique to metagenomic data derived from archaeological remains, such as paleofeces and dental calculus, we can investigate past microbiome functional diversity that may be absent or underrepresented in the modern microbiome gene catalogue. However, compared to modern samples, ancient samples are often burdened with environmental contamination, resulting in metagenomic datasets that represent mixtures of ancient and modern DNA. The ability to rapidly and reliably establish the authenticity and integrity of ancient samples is essential for ancient DNA studies, and the ability to distinguish between ancient and modern sequences is particularly important for ancient microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA fragmentation and cytosine deamination (observed as C-to-T transitions) are typically used to authenticate ancient samples and sequences. However, existing tools for inspecting and filtering aDNA damage either compute it at the read level, which leads to high data loss and lower quality when used in combination with de novo assembly, or require manual inspection, which is impractical for ancient assemblies that typically contain tens to hundreds of thousands of contigs. To address these challenges, we designed PyDamage, a robust, automated approach for aDNA damage estimation and authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based approach to discriminate between truly ancient contigs and contigs originating from modern contamination. We test PyDamage on both simulated, and empirical aDNA data from archaeological paleofeces, and we demonstrate its ability to reliably and automatically identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de novo assembly, PyDamage opens up new doors to explore functional diversity in ancient metagenomic datasets.