RF
Rebecca Fine
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
931
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Rare and low-frequency coding variants alter human adult height

Eirini Marouli et al.Jan 31, 2017
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1–4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1–2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. Data from over 700,000 individuals reveal the identity of 83 sequence variants that affect human height, implicating new candidate genes and pathways as being involved in growth. As a highly heritable polygenic trait, human height has provided a model for the genetic analysis of complex traits. So far about 700 common genetic variants have been linked to height through genome-wide association studies, but the role of low-frequency and rare variants has not been systematically explored. Guillaume Lettre, Joel Hirschhorn and colleagues in the GIANT Consortium now report their analysis of coding regions in the genomes of 711,418 individuals. They identify 120 loci newly associated with height, including 32 rare and 51 low-frequency coding variants. They highlight 83 candidate genes with low-frequency height-associated variants and implicate biological pathways with known roles in growth disorders as well as new candidates. Their analyses provide insights into the genomic architecture of human height.
0
Citation593
0
Save
0

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

Valérie Turcot et al.Dec 19, 2017
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity. Exome-wide analysis identifies rare and low-frequency coding variants associated with body mass index. Gene-based meta-analysis and functional studies implicate 13 genes, eight of which are novel, and neuronal pathways as factors in human obesity.
0
Citation327
0
Save
0

Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

Natasha Ng et al.Oct 3, 2019
Summary Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose [FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated associations of exome-array variants in up to 144,060 individuals without diabetes of multiple ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained multiple rare functional variants, including two alleles within the same codon with divergent effects on glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize biological inference. Highlights 23 novel coding variant associations (single-point and gene-based) for glycemic traits 51 effector transcripts highlighted different pathway/tissue signatures for each trait The exocrine pancreas and gut influence fasting and 2h glucose, respectively Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia
0
Citation11
0
Save
0

Benchmarker: an unbiased, association-data-driven strategy to evaluate gene prioritization algorithms

Rebecca Fine et al.Dec 17, 2018
Genome-wide association studies (GWAS) are valuable for understanding human biology, but associated loci typically contain multiple associated variants and genes. Thus, algorithms that prioritize likely causal genes and variants for a given phenotype can provide biological interpretations of association data. However, a critical, currently missing capability is to objectively compare performance of such algorithms. Typical comparisons rely on "gold standard" genes harboring causal coding variants, but such gold standards may be biased and incomplete. To address this issue, we developed Benchmarker, an unbiased, data-driven benchmarking method that compares performance of prioritization strategies to each other (and to random chance) by leave-one-chromosome-out cross-validation with stratified linkage disequilibrium (LD) score regression. We first applied Benchmarker to twenty well-powered GWAS and compared gene prioritization based on strategies employing three different data sources, including annotated gene sets and gene expression. No individual strategy clearly outperformed the others, but genes prioritized by multiple strategies had higher per-SNP heritability than those prioritized by one strategy only. We also compared two gene prioritization methods, DEPICT and MAGMA; genes prioritized by both methods strongly outperformed genes prioritized by only one. Our results suggest that combining data sources and algorithms should pinpoint higher quality genes for follow-up. Benchmarker provides an unbiased approach to evaluate any method that provides genome-wide prioritization of gene sets, genes, or variants, and can determine the best such method for any particular GWAS. Our method addresses an important unmet need for rigorous tool assessment and can assist in mapping genetic associations to causal function.
0

PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY FAT DISTRIBUTION

Andrew Hattersley et al.Jun 30, 2018
Body fat distribution is a heritable risk factor for a range of adverse health consequences, including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries for discovery and 132,177 independent European-ancestry individuals for validation. We identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low frequency or rare (MAF < 5%) coding variants that have not been reported previously. Pathway/gene set enrichment analyses of all associated variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, and bone development and morphology as processes affecting fat distribution and body shape. Furthermore, the cross-trait associations and the analyses of variant and gene function highlight a strong connection to lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, specifically in Drosophila RNAi-knockdown crosses, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). By examining variants often poorly tagged or entirely missed by genome-wide association studies, we implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.