ML
Magda Lewandowska
Author with expertise in Evolution and Diversity of Cnidarians and Jellyfish Blooms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
4
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Dominant toxin hypothesis: unravelling the venom phenotype across micro and macroevolution

Edward Smith et al.Jun 26, 2022
+6
J
J
E
Abstract Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying the toxin expression dynamics that determine the venom phenotype remains unresolved. Here, we use comparative genomics and transcriptomics to reveal that toxin expression in sea anemones evolves rapidly with little constraint and that a single toxin family dictates the venom phenotype in each species. This dominant toxin family is characterized by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis , revealed significant variation in the number of copies of the dominant toxin ( Nv1 ) across populations, corresponding to significant differences in Nv1 expression at both the transcript and protein levels. These differences in Nv1 copies are driven by independent expansion events, resulting in distinct haplotypes that have a restricted geographical distribution. Strikingly, one population has undergone a severe contraction event, causing a near-complete loss of Nv1 production. Our findings across micro- and macroevolutionary scales in sea anemones complement observations of single dominant toxin family present in other venomous organisms and establishes the dominant toxin hypothesis whereby venomous animals have convergently evolved a similar strategy in shaping the venom phenotype.
23
Citation4
0
Save
33

Functional characterization of a “plant-like” HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis

Alok Tripathi et al.May 31, 2020
+4
A
Y
A
Abstract While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its helping partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a “plant-specific” Dicer partner, in the metazoan phylum Cnidaria challenges the view that miRNAs evolved convergently in animals and plants. Here we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis : Inhibition of Hyl1La resulted in arresting of metamorphosis in Nematostella embryos and most of the miRNAs were significantly downregulated in Hyl1La knockdown animals. Further, immunoprecipitation followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. These results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis.
33
0
Save
0

Functional characterization of the cnidarian antiviral immune response reveals ancestral complexity

Magda Lewandowska et al.Nov 12, 2020
+2
Y
T
M
ABSTRACT Animals developed a broad repertoire of innate immune sensors and downstream effector cascades for defense against RNA viruses. Yet, this system highly varies between different bilaterian animals, masking its ancestral state. In this study we aimed to characterize the antiviral immune response of the cnidarian Nematostella vectensis and decipher the function of the retinoic acid-inducible gene I-like receptors (RLRs) known to detect viral double-stranded RNA (dsRNA) in bilaterians, but activate different antiviral pathways in vertebrates and nematodes. We show that a mimic of long viral dsRNA triggers a complex antiviral immune response bearing features distinctive for both vertebrate and invertebrate systems. Furthermore, the results of affinity assays and knockdown experiments provide functional evidence for the conserved role of RLRs in initiating immune response to dsRNA that originated before the cnidarian-bilaterian split and lay a strong foundation for future research on the evolution of the immune responses to RNA viruses.
0

Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals

Itamar Kozlovski et al.Nov 20, 2023
+3
T
A
I
Abstract Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis , a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis . Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
0

Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals

Itamar Kozlovski et al.Jul 16, 2024
+3
T
A
I
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
0

Initial virome characterization of the common cnidarian lab model Nematostella vectensis

Magda Lewandowska et al.Jan 15, 2020
Y
Y
M
The role of viruses in forming a stable holobiont has been a subject of extensive research in the recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed almost complete lack of viruses in the samples from the early developmental stages which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for functional studies of viruses and antiviral systems in this lab model cnidarian.
0

Unravelling the developmental and functional significance of an ancient Argonaute duplication

Arie Fridrich et al.Feb 4, 2020
+2
M
V
A
microRNAs (miRNAs), base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this glaring phylogenetic gap, we characterized the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulation, Argonaute-immunoprecipitations and high-throughput sequencing we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.