MA
Micheala Aldred
Author with expertise in Diagnosis and Treatment of Pulmonary Hypertension
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
2,738
h-index:
42
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetics and Genomics of Pulmonary Arterial Hypertension

Florent Soubrier et al.Dec 1, 2013
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the power of next-generation sequencing to successfully identify additional genes that will be described in this report. Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding.
0
Citation600
0
Save
0

Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension

Lü Long et al.Jun 15, 2015
BMP9 activates signaling through the BMPR-II receptor in endothelial cells and reverses established disease in three animal models of pulmonary hypertension, thus pointing to a potential new treatment for this disease. Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.
0
Citation427
0
Save
0

Mutations of the TGF-β type II receptorBMPR2 in pulmonary arterial hypertension

Rajiv Machado et al.Jan 20, 2006
Pulmonary arterial hypertension (PAH) is clinically characterized by a sustained elevation in mean pulmonary artery pressure leading to significant morbidity and mortality. The disorder is typically sporadic, and in such cases the term idiopathic PAH (IPAH) is used. However, cases that occur within families (familial PAH (FPAH)) display similar clinical and histopathological features, suggesting a common etiology. Heterozygous mutations of a type II member of the TGF-beta cell signaling superfamily known as BMPR2 on chromosome 2q33 have been identified in many kindreds with FPAH, yet display both reduced penetrance and sex bias. This report presents the compilation of data for 144 distinct mutations that alter the coding sequence of the BMPR2 gene identified in 210 independent PAH subjects. This large data set characterizes the extent of sequence variation and reveals that the majority (71%) of mutations in FPAH and IPAH comprise nonsense, frameshift, and splice-site defects, and gene rearrangements. These predict premature termination of the transcript with likely loss through the process of nonsense-mediated decay (NMD). A total of 44 missense mutations were identified that substitute amino acid residues at highly conserved sites within recognized functional domains of the mature receptor. We assess this category of mutations in the context of their heterogeneous effects on cell signaling when assayed by in vitro cell-based systems. Disease-causing mutation hot-spots within BMPR2 are summarized. Taken together, these observations are likely to aid in the development of targeted mutation detection strategies relevant for patient management. Finally, we examine the age- and sex-dependent reduced penetrance of BMPR2 mutations by reviewing bmpr2 animal models and the requirement for additional genetic and/or environmental modifiers of disease. In conclusion, these data provide compelling genetic evidence that haploinsufficiency is the predominant molecular mechanism underlying disease predisposition, and support the concept of a critical threshold of signaling activity below which disease may be precipitated.
0
Citation403
0
Save
0

An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension

Jongmin Kim et al.Dec 23, 2012
Vascular homeostasis in the lung is disturbed in pulmonary arterial hypertension. Jongmin Kim et al. delineate a new signaling axis controlling endothelial cell proliferation and cytokine production that is dysregulated in pulmonary endothelial cells from individuals with this disease. In this axis, the peptide apelin controls expression of the cytokine FGF2, a mitogen for endothelial and vascular smooth-muscle cells, through effects on two microRNAs. The authors also demonstrated the functional importance of these miRNAs in rat models of pulmonary hypertension. Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with obliteration of pulmonary arterioles and formation of plexiform lesions composed of hyperproliferative endothelial and vascular smooth-muscle cells. Here we describe a microRNA (miRNA)-dependent association between apelin (APLN) and fibroblast growth factor 2 (FGF2) signaling in pulmonary artery endothelial cells (PAECs). APLN deficiency in these cells led to increased expression of FGF2 and its receptor FGFR1 as a consequence of decreased expression of miR-424 and miR-503, which directly target FGF2 and FGFR1. miR-424 and miR-503 were downregulated in PAH, exerted antiproliferative effects in PAECs and inhibited the capacity of PAEC-conditioned medium to induce the proliferation of pulmonary artery smooth-muscle cells. Reconstitution of miR-424 and miR-503 in vivo ameliorated pulmonary hypertension in experimental models. These studies identify an APLN-dependent miRNA-FGF signaling axis needed for the maintenance of pulmonary vascular homeostasis.
0

Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems

Stephen Williams et al.Aug 1, 2010
Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome. Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome.
0
Citation282
0
Save
4

Heterozygous transcriptional signatures unmask variable premature termination codon (PTC) burden alongside pathway-specific adaptations in blood outgrowth endothelial cells from patients with nonsense DNA variants causing hereditary hemorrhagic telangiectasia

Maria Bernabeu‐Herrero et al.Dec 6, 2021
ABSTRACT Frameshift and nonsense DNA variants represent the commonest causes of monogenic inherited diseases. They usually generate premature termination codon (PTC)-containing RNA transcripts that produce truncated proteins in recombinant systems, but endogenously are subject to nonsense mediated decay. To examine native consequences of these variants, we derived cells from pre-genotyped patients. Blood outgrowth endothelial cells (BOECs) were established from individuals with hereditary hemorrhagic telangiectasia (HHT) due to a heterozygous nonsense variant in ACVRL1 , ENG or SMAD4 that each encode an endothelial cell-expressed protein mediating bone morphogenetic protein (BMP)/ transforming growth factor (TGF)-β signalling. RNA sequencing alignments to PTC alleles varied from 8-23% of expected, and differed between same-donor replicates. Differential gene expression analyses were validated by single cell qRT-PCR, and identification of changes in wider, disease-specific BMP/TGF-β pathway components. However, the most differentially expressed genes clustered to disease-independent terms for post translational protein modification (isopeptide bond; ubiquitin-like conjugation). They were the only terms meeting Benjamini significance after clustering Bonferroni-ranked, differentially expressed genes from the 5,013 meeting 10% intraassay coefficients of variation, and significance was robust to normalisation methods. Optimised pulse chase experiments supported perturbed wildtype protein maturation, but no PTC-truncated protein was identified. Unexpectedly, BOEC cultures with highest PTC persistence were discriminated in unsupervised hierarchical clustering of low GINI coefficient ‘invariant’ housekeeper genes, and patterns were compatible with higher cellular stress. The findings support a model whereby PTCs are more of a burden in stressed cells, and lead us to conclude that overlooked and varying PTC burdens contribute to biological variability.
4
Citation3
0
Save
0

Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary Arterial Hypertension

Jason Hong et al.Jan 16, 2023
Abstract Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.
0
Citation2
0
Save
0

Integrative Multiomics in the Lung Reveals a Protective Role of Asporin in Pulmonary Arterial Hypertension

Jason Hong et al.Aug 21, 2024
BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN , coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor–β/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Load More