RS
Reza Sohrabi
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
858
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A plant genetic network for preventing dysbiosis in the phyllosphere

Tao Chen et al.Apr 8, 2020
The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment. Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.
0
Citation381
0
Save
0

Increasing the resilience of plant immunity to a warming climate

Jong Kim et al.Jun 29, 2022
Abstract Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone 1–3 , is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism 4–7 . Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B 8,9 (phyB) and EARLY FLOWERING 3 10 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates 11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1 , which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants 12 . These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant–pathogen–environment disease triangle and the emergence of new disease epidemics in a warming climate.
0
Citation80
1
Save
1

A critical role of a eubiotic microbiota in gating proper immunocompetence inArabidopsis

Bradley Paasch et al.Mar 2, 2023
Abstract Although many studies have shown that microbes can ectopically stimulate or suppress plant immune responses, the fundamental question of whether the entire preexisting microbiota is indeed required for proper development of plant immune response remains unanswered. Using a recently developed peat-based gnotobiotic plant growth system we found that Arabidopsis grown in the absence of a natural microbiota lacked age-dependent maturation of plant immune response and were defective in several aspects of pattern-triggered immunity. Axenic plants exhibited hypersusceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea . Microbiota-mediated immunocompetence was suppressed by rich nutrient conditions, indicating a tripartite interaction between the host, microbiota, and abiotic environment. A synthetic microbiota composed of 48 culturable bacterial strains from the leaf endosphere of healthy Arabidopsis plants was able to substantially restore immunocompetence similar to plants inoculated with a soil-derived community. In contrast, a 52-member dysbiotic synthetic leaf microbiota overstimulated the immune transcriptome. Together, these results provide evidence for a causal role of a eubiotic microbiota in gating proper immunocompetence and age-dependent immunity in plants.
1
Citation1
0
Save
0

Loss of a plant receptor kinase recruits beneficial rhizosphere-associated Pseudomonas

Yi Song et al.Nov 2, 2020
Abstract Maintaining microbiome structure is critical for the health of both plants 1 and animals 2 . In plants, enrichment of beneficial bacteria is associated with advantageous outcomes including protection from biotic and abiotic stress 3,4 . However, the genetic and molecular mechanisms by which plants enrich for specific beneficial microbes without general dysbiosis have remained elusive. Here we show that through regulation of NADPH oxidase, FERONIA kinase negatively regulates beneficial Pseudomonas fluorescens in the Arabidopsis rhizosphere microbiome. By rescreening a collection of Arabidopsis mutants that affect root immunity under gnotobiotic conditions, followed by microbiome sequencing in natural soil, we identified a FERONIA mutant ( fer-8 ) with a rhizosphere microbiome enriched in P. fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial and promoted plant growth. The effect of FER on rhizosphere Pseudomonads was independent of its immune coreceptor function, role in development, and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere Pseudomonad levels. Overexpression of the ROP2 gene (encoding a client of FER and positive regulator of NADPH oxidase 5 ) in fer-8 plants suppressed Pseudomonad overgrowth. This work shows that FER -mediated ROS production regulates levels of beneficial Pseudomonads in the rhizosphere microbiome.