KG
Kristine Glunde
Author with expertise in Biomedical Applications of Spectroscopy Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
348
h-index:
44
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular Causes of the Aberrant Choline Phospholipid Metabolism in Breast Cancer

Kristine Glunde et al.Jun 15, 2004
Z
C
K
Abstract Proton magnetic resonance spectroscopy (1H MRS) consistently detects significant differences in choline phospholipid metabolites of malignant versus benign breast lesions. It is critically important to understand the molecular causes underlying these metabolic differences, because this may identify novel targets for attack in cancer cells. In this study, differences in choline membrane metabolism were characterized in breast cancer cells and normal human mammary epithelial cells (HMECs) labeled with [1,2-13C]choline, using 1H and 13C magnetic resonance spectroscopy. Metabolic fluxes between membrane and water-soluble pool of choline-containing metabolites were assessed by exposing cells to [1,2-13C]choline for long and short periods of time to distinguish between catabolic and anabolic pathways in choline metabolism. Gene expression analysis using microarrays was performed to understand the molecular mechanisms underlying these changes. Breast cancer cells exhibited increased phosphocholine (PC; P &lt; 0.001), total choline-containing metabolites (P &lt; 0.01), and significantly decreased glycerophosphocholine (P &lt; 0.05) compared with normal HMECs. Decreased 13C-enrichment was detected in choline (P &lt; 0.001) and phosphocholine (P &lt; 0.05, P &lt; 0.001) of breast cancer cells compared with HMECs, indicating a higher metabolic flux from membrane phosphatidylcholine to choline and phosphocholine in breast cancer cells. Choline kinase and phospholipase C were significantly overexpressed, and lysophospholipase 1, phospholipase A2, and phospholipase D were significantly underexpressed, in breast cancer cells compared with HMECs. The magnetic resonance spectroscopy data indicated that elevated phosphocholine in breast cancer cells was primarily attributable to increased choline kinase activity and increased catabolism mediated by increased phospholipase C activity. These observations were consistent with the overexpression of choline kinase and phospholipase C detected in the microarray analyses.
20

Novel tumorigenic FOXM1-PTAFR-PTAF axis revealed by multi-omic profiling in TP53/CDKN2A-double knockout human gastroesophageal junction organoid model

Hua Zhao et al.May 11, 2022
+16
A
Y
H
Abstract Inactivation of the tumor suppressor genes TP53 and CDKN2A occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, due to a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have been incompletely characterized. Here we report the development of the first wild-type primary human GEJ organoid model, as well as a CRISPR-edited transformed GEJ organoid model. CRISPR/Cas9 engineering to inactivate TP53 and CDKN2A ( TP53/CDKN2A KO ) in GEJ organoids induced morphologic dysplasia as well as pro-neoplastic features in vitro and tumor formation in vivo. Notably, lipidomic profiling identified several Platelet-Activating Factors (PTAFs) among the most upregulated lipids in CRISPR-edited organoids; and importantly, PTAF/PTAFR abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) significantly blocked proliferation and other pro-neoplastic features of TP53/CDKN2A KO GEJ organoids in vitro and tumor formation in vivo . In addition, murine xenografts derived from Eso26, an established esophageal adenocarcinoma (EAC) cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly Forkhead Box M1 (FOXM1). Importantly, FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. In summary, we established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and discovered a potential cancer-therapeutic strategy, while providing insights into pro-neoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia. One Sentence Summary Novel tumorigenic FOXM1-PTAFR-PTAF axis revealed by multi-omic profiling in TP53/CDKN2A- double knockout human gastroesophageal junction organoid model. Graphic Abstract
20
Citation2
0
Save
6

FluoMALDI microscopy: matrix co-crystallization simultaneously enhances fluorescence and MALDI imaging

Eun Yang et al.May 27, 2023
+9
H
X
E
ABSTRACT We report that co-crystallization of fluorophores with matrix-assisted laser desorption/ionization (MALDI) imaging matrices significantly enhances fluorophore brightness up to 79-fold, enabling the amplification of innate tissue autofluorescence. This discovery facilitates FluoMALDI, the imaging of the same biological sample by both fluorescence microscopy and MALDI imaging. Our approach combines the high spatial resolution and specific labeling capabilities of fluorescence microscopy with the inherently multiplexed, versatile imaging capabilities of MALDI imaging. This new paradigm eliminates the notion that MALDI matrices obscure and obstruct optical microscopy approaches, allowing to image the exact same cells in tissues, free of any physical changes between fluorescence and MALDI imaging, which minimizes data registration processes. Matrix-fluorophore co-crystallization also facilitates applications with insufficient fluorescence brightness. We showcase the capabilities of FluoMALDI imaging with endogenous and exogenous fluorophores and autofluorescence-based FluoMALDI of brain and kidney tissue sections. FluoMALDI will advance structural-functional microscopic imaging in cell biology, biomedicine, and pathology.
6
Citation1
0
Save
0

Aberrant N-glycosylation is a therapeutic target in carriers of a common and highly pleiotropic mutation in the manganese transporter ZIP8

Vartika Tomar et al.Jul 2, 2024
+6
R
S
V
The treatment of defective glycosylation in clinical practice has been limited to patients with rare and severe phenotypes associated with congenital disorders of glycosylation (CDG). Carried by approximately 5% of the human population, the discovery of the highly pleiotropic, missense mutation in a manganese transporter ZIP8 has exposed under-appreciated roles for Mn homeostasis and aberrant Mn-dependent glycosyltransferases activity leading to defective N-glycosylation in complex human diseases. Here, we test the hypothesis that aberrant N-glycosylation contributes to disease pathogenesis of ZIP8 A391T-associated Crohn's disease. Analysis of N-glycan branching in intestinal biopsies demonstrates perturbation in active Crohn's disease and a genotype-dependent effect characterized by increased truncated N-glycans. A mouse model of ZIP8 391-Thr recapitulates the intestinal glycophenotype of patients carrying mutations in ZIP8. Borrowing from therapeutic strategies employed in the treatment of patients with CDGs, oral monosaccharide therapy with N-acetylglucosamine ameliorates the epithelial N-glycan defect, bile acid dyshomeostasis, intestinal permeability, and susceptibility to chemical-induced colitis in a mouse model of ZIP8 391-Thr. Together, these data support ZIP8 391-Thr alters N-glycosylation to contribute to disease pathogenesis, challenging the clinical paradigm that CDGs are limited to patients with rare diseases. Critically, the defect in glycosylation can be targeted with monosaccharide supplementation, providing an opportunity for genotype-driven, personalized medicine.
1

RaMALDI: enabling simultaneous Raman and MALDI imaging of the same tissue section

Eun Yang et al.May 7, 2023
+6
C
J
E
Abstract Multimodal tissue imaging techniques that integrate two complementary modalities are powerful discovery tools for unraveling biological processes and identifying biomarkers of disease. Combining Raman spectroscopic imaging (RSI) and matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain fused images with the advantages of both modalities has the potential of providing spatially resolved, sensitive, and specific biomolecular information, but has so far involved two separate, consecutive tissue sections for RSI and MALDI MSI, resulting in images from two separate entities with inherent disparities. We have developed RaMALDI, a streamlined, integrated, multimodal imaging workflow of RSI and MALDI MSI, performed on a single tissue section with one sample preparation protocol. We show that RaMALDI imaging of various tissues effectively integrates molecular information acquired from both RSI and MALDI MSI of the same sample. Table of Contents We demonstrate for the first time RaMALDI imaging, a streamlined, integrated multimodal imaging workflow of Raman spectroscopy imaging (RSI) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI), which is performed on a single sample and uses one sample preparation protocol. RaMALDI imaging of various tissues effectively integrates molecular information acquired from both RSI and MALDI MSI of the same sample.
4

Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential

Santosh Paidi et al.Sep 24, 2020
+3
V
R
S
Abstract Identification of the metastatic potential represents one of the most important tasks for molecular imaging of cancer. While molecular imaging of metastases has witnessed substantial progress as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype has proven to be more elusive underscoring the need to marry emerging imaging techniques with tumor biology. In this study, we utilize both the morphological and molecular information provided by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic potential, we show that 3D refractive index tomograms can capture subtle morphological differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging the molecular specificity of Raman spectroscopy, we demonstrate that coarse Raman microscopy is capable of rapidly mapping a sufficient number of cells for training a random forest classifier that can accurately predict the metastatic potential of cells at a single-cell level. We also leverage multivariate curve resolution – alternating least squares decomposition of the spectral dataset to demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study provides a rationale for employing coarse Raman mapping to substantially reduce measurement time thereby enabling the acquisition of reasonably large training datasets that hold the key for label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive phenotypes.