VR
Vitaliy Rayz
Author with expertise in Management and Pathophysiology of Traumatic Brain Injury
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
494
h-index:
21
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study.

Loïc Boussel et al.Aug 8, 2008
Evolution of intracranial aneurysmal disease is known to be related to hemodynamic forces acting on the vessel wall. Low wall shear stress (WSS) has been reported to have a negative effect on endothelial cells normal physiology and may be an important contributor to local remodeling of the arterial wall and to aneurysm growth and rupture.Seven patient-specific models of intracranial aneurysms were constructed using MR angiography data acquired at two different time points (mean 16.4+/-7.4 months between the two time points). Numeric simulations of the flow in the baseline geometries were performed to compute WSS distributions. The lumenal geometries constructed from the two time points were manually coregistered, and the radial displacement of the wall was calculated on a pixel-by-pixel basis. This displacement, corresponding to the local growth of the aneurysm, was compared to the time-averaged wall shear stress (WSS TA) through the cardiac cycle at that location. For statistical analysis, radial displacement was considered to be significant if it was larger than half of the MR pixel resolution (0.3 mm).Mean WSS TA values obtained for the areas with a displacement smaller and greater than 0.3 mm were 2.55+/-3.6 and 0.76+/-1.5 Pa, respectively (P<0.001). A linear correlation analysis demonstrated a significant relationship between WSS TA and surface displacement (P<0.001).These results indicate that aneurysm growth is likely to occur in regions where the endothelial layer lining the vessel wall is exposed to abnormally low wall shear stress.
11

Hemodynamic modeling of the circle of Willis reveals unanticipated functions during cardiovascular stress

J. Muskat et al.Sep 1, 2021
The circle of Willis (CW) allows blood to be redistributed throughout the brain during local ischemia; however, it is unlikely that the anatomic persistence of the CW across mammalian species is driven by natural selection of individuals with resistance to cerebrovascular disease typically occurring in elderly humans. To determine the effects of communicating arteries (CoAs) in the CW on cerebral pulse wave propagation and blood flow velocity, we simulated young, active adult humans undergoing different states of cardiovascular stress (i.e., fear and aerobic exercise) using discrete transmission line segments with stress-adjusted cardiac output, peripheral resistance, and arterial compliance. Phase delays between vertebrobasilar and carotid pulses allowed bidirectional shunting through CoAs: both posteroanterior shunting before the peak of the pulse waveform and anteroposterior shunting after internal carotid pressure exceeded posterior cerebral pressure. Relative to an absent CW without intact CoAs, the complete CW blunted anterior pulse waveforms, although limited to 3% and 6% reductions in peak pressure and pulse pressure, respectively. Systolic rate of change in pressure (i.e., ∂P/∂t) was reduced 15%-24% in the anterior vasculature and increased 23%-41% in the posterior vasculature. Bidirectional shunting through posterior CoAs was amplified during cardiovascular stress and increased peak velocity by 25%, diastolic-to-systolic velocity range by 44%, and blood velocity acceleration by 134% in the vertebrobasilar arteries. This effect may facilitate stress-related increases in blood flow to the cerebellum (improving motor coordination) and reticular-activating system (enhancing attention and focus) via a nitric oxide-dependent mechanism, thereby improving survival in fight-or-flight situations.NEW & NOTEWORTHY Hemodynamic modeling reveals potential evolutionary benefits of the intact circle of Willis (CW) during fear and aerobic exercise. The CW equalizes pulse waveforms due to bidirectional shunting of blood flow through communicating arteries, which boosts vertebrobasilar blood flow velocity and acceleration. These phenomena may enhance perfusion of the brainstem and cerebellum via nitric oxide-mediated vasodilation, improving performance of the reticular-activating system and motor coordination in survival situations.
11
Citation5
2
Save
10

Real-time Quantification of in vivo cerebrospinal fluid velocity using fMRI inflow effect

Tyler Diorio et al.Aug 16, 2023
Abstract In vivo estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Current cardiac or respiratory gated approaches, such as 4D flow MRI, cannot capture CSF movement in real time due to limited temporal resolution and in addition deteriorate in accuracy at low fluid velocities. Other techniques like real-time PC-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability even in research settings. This study aims to quantify the inflow effect of dynamic CSF motion on functional magnetic resonance imaging (fMRI) for in vivo , real-time measurement of CSF flow velocity. We considered linear and nonlinear models of velocity waveforms and empirically fit them to fMRI data from a controlled flow experiment. To assess the utility of this methodology in human data, CSF flow velocities were computed from fMRI data acquired in eight healthy volunteers. Breath holding regimens were used to amplify CSF flow oscillations. Our experimental flow study revealed that CSF velocity is nonlinearly related to inflow effect-mediated signal increase and well estimated using an extension of a previous nonlinear framework. Using this relationship, we recovered velocity from in vivo fMRI signal, demonstrating the potential of our approach for estimating CSF flow velocity in the human brain. This novel method could serve as an alternative approach to quantifying slow flow velocities in real time, such as CSF flow in the ventricular system, thereby providing valuable insights into the glymphatic system’s function and its implications for neurological disorders.
1

Real‐time quantification of in vivo cerebrospinal fluid velocity using the functional magnetic resonance imaging inflow effect

Tyler Diorio et al.Jun 16, 2024
Abstract In vivo estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory‐gated approaches, such as 4D flow magnetic resonance imaging (MRI), cannot capture CSF movement in real time because of limited temporal resolution and, in addition, deteriorate in accuracy at low fluid velocities. Other techniques like real‐time phase‐contrast‐MRI or time‐spatial labeling inversion pulse are not limited by temporal averaging but have limited availability, even in research settings. This study aims to quantify the inflow effect of dynamic CSF motion on functional MRI (fMRI) for in vivo, real‐time measurement of CSF flow velocity. We considered linear and nonlinear models of velocity waveforms and empirically fit them to fMRI data from a controlled flow experiment. To assess the utility of this methodology in human data, CSF flow velocities were computed from fMRI data acquired in eight healthy volunteers. Breath‐holding regimens were used to amplify CSF flow oscillations. Our experimental flow study revealed that CSF velocity is nonlinearly related to inflow effect‐mediated signal increase and well estimated using an extension of a previous nonlinear framework. Using this relationship, we recovered velocity from in vivo fMRI signal, demonstrating the potential of our approach for estimating CSF flow velocity in the human brain. This novel method could serve as an alternative approach to quantifying slow flow velocities in real time, such as CSF flow in the ventricular system, thereby providing valuable insights into the glymphatic system's function and its implications for neurological disorders.
1
Citation2
1
Save
0

Using respiratory challenges to modulate CSF movement across different physiological pathways: An fMRI study

Vidhya Nair et al.Jan 1, 2024
Abstract With growing evidence signifying the impact of cerebrospinal fluid (CSF) flow in facilitating waste clearance from the brain and potential pathophysiological links to neurodegenerative disorders, it is of vital importance to develop effective methods to modulate CSF flow in the brain. Here, we attempt this by means of simple commonly used respiratory challenges—paced breathing and breath holding. Functional Magnetic Resonance Imaging scans of the brain and neck respectively were used to record the craniad and caudad CSF movements at the fourth ventricle from eight healthy volunteers during paced breathing and breath holding. Further, we utilized a novel approach for the first time to combine these separately acquired unidirectional CSF movement signals to compare the CSF flow in both directions (in the fourth ventricle) with the respiratory stimuli as a physiological control. Our results demonstrate that these respiratory challenges enhance the magnitude as well as control the direction of CSF movement in the fourth ventricle. They also reveal the capability of blood CO2 concentration changes (induced by respiratory challenges) in the low-frequency range to bring about these CSF movement modulations. Finally, we also successfully report our novel approach where we use these breathing challenges as a unique control condition to detect the small net CSF flows from independently captured unidirectional signals.
0
Citation1
0
Save
1

MRI-based quantification of cardiac-driven brain biomechanics for early detection of neurological disorders

Tyler Diorio et al.Aug 6, 2024
We present a pipeline to quantify biomechanical environment of the brain using solely MRI-derived data in order to elucidate the role of biomechanical factors in neurodegenerative disorders. Neurological disorders, like Alzheimer's and Parkinson's diseases, are associated with physical changes, including the accumulation of amyloid-β and tau proteins, damage to the cerebral vasculature, hypertension, atrophy of the cortical gray matter, and lesions of the periventricular white matter. Alterations in the external mechanical environment of cells can trigger pathological processes, and it is known that AD causes reduced stiffness in the brain tissue during degeneration. However, there appears to be a significant lag time between microscale changes and macroscale obstruction of neurological function in the brain. Here, we present a pipeline to quantify the whole brain biomechanical environment to bridge the gap in understanding how underlying brain changes affect macroscale brain biomechanics. This pipeline enables image-based quantification of subject-specific displacement field of the whole brain to subject-specific strain, strain rate, and stress across 133 labeled functional brain regions. We have focused our development efforts on utilizing solely MRI-derived data to facilitate clinical applicability of our approach and have emphasized automation in all aspects of our methods to reduce operator dependance. Our pipeline has the potential to improve early detection of neurological disorders and facilitate the identification of disease before widespread, irreversible damage has occurred.
0

Image‐based modeling of biomechanical factors for risk assessment of developing periventricular white matter hyperintensities

Yunjie Tong et al.Dec 1, 2020
Abstract Background White matter lesions, visible as white matter hyperintensities (WMH) on T2‐weighted MR images, have been associated with aging and with cognitive decline. Among WMHs, periventricular WMHs (adjacent to the ventricular system) have preferential associations with cognitive decline/impairment. Despite the prevalence and potential significance in cognitive declines, there is little to no in‐depth knowledge regarding the underlying causes of WMH, except that it is related to small vessel disease. We hypothesize that the development of periventricular WMH is caused by pulsatile stresses exerted on the lateral wall of the ventricles. Elevated stress in regions adjacent to the ventricular wall, coupled with the weakening of the ependymal layer, may trigger the early changes in white‐matter microstructure and surrounding small vessels, eventually causing WMH. Method We developed a method to predict stress distribution in the periventricular white matter using patient‐specific brain anatomy and ventricular movement, obtained through MR imaging techniques. Utilizing established tools for image‐based segmentation (ITK Snap), pre‐processing (3D Systems–Geomagic; Altair–Hypermesh), and finite element modeling (ANSYS Workbench), we tested this pipeline on a healthy volunteer. Patient‐specific ventricular wall movement was assessed over the cardiac cycle using fast EPI MRI and utilized as a boundary condition driving displacement on the ventricular walls in the computational model. Result As shown in Figure 1, the stress distribution around the lateral ventricles was calculated based on subject specific ventricular geometry. The stress distribution is not uniform, but changes with the curvature of the ventricular wall. Peak stress concentrations were detected around the anterior and posterior horns of the lateral ventricles, where WMHs are commonly found. Initial results provide support for our hypothesis of biomechanical contributions to lesion development. Conclusion We developed a computational modeling framework based on the ventricular anatomy obtained with structural MR images, and material properties from relevant literature and fast EPI MRI. The periventricular locations with high stresses were correlated with the common WMH topography. In the next step, we will apply the model to patient data to further determine the role of biomechanical factors in forming WMH.